These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 18417341)
1. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Lo YC; Bai MD; Chen WM; Chang JS Bioresour Technol; 2008 Nov; 99(17):8299-303. PubMed ID: 18417341 [TBL] [Abstract][Full Text] [Related]
2. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1. Lo YC; Huang CY; Cheng CL; Lin CY; Chang JS Bioresour Technol; 2011 Sep; 102(18):8384-92. PubMed ID: 21489783 [TBL] [Abstract][Full Text] [Related]
3. Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. Lo YC; Su YC; Chen CY; Chen WM; Lee KS; Chang JS Bioresour Technol; 2009 Dec; 100(23):5802-7. PubMed ID: 19604692 [TBL] [Abstract][Full Text] [Related]
4. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Chen SD; Sheu DS; Chen WM; Lo YC; Huang TI; Lin CY; Chang JS Biotechnol Prog; 2007; 23(6):1312-20. PubMed ID: 17924646 [TBL] [Abstract][Full Text] [Related]
5. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC; Chen WM; Hung CH; Chen SD; Chang JS Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245 [TBL] [Abstract][Full Text] [Related]
6. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
7. Enhanced H2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentations. Wu X; Li Q; Dieudonne M; Cong Y; Zhou J; Long M Bioresour Technol; 2010 Dec; 101(24):9605-11. PubMed ID: 20724146 [TBL] [Abstract][Full Text] [Related]
8. [Utilization of sugar cane bagasse hydrolysates for xylitol production by yeast]. Zhang HR; Zeng JZ; He CX; Fang H; Cai AH Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):724-8. PubMed ID: 12674644 [TBL] [Abstract][Full Text] [Related]
9. Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Rai PK; Singh SP; Asthana RK; Singh S Bioresour Technol; 2014; 152():140-6. PubMed ID: 24291314 [TBL] [Abstract][Full Text] [Related]
10. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Cheng CL; Chang JS Bioresour Technol; 2011 Sep; 102(18):8628-34. PubMed ID: 21481585 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Tang GL; Huang J; Sun ZJ; Tang QQ; Yan CH; Liu GQ J Biosci Bioeng; 2008 Jul; 106(1):80-7. PubMed ID: 18691536 [TBL] [Abstract][Full Text] [Related]
13. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Geng A; He Y; Qian C; Yan X; Zhou Z Bioresour Technol; 2010 Jun; 101(11):4029-33. PubMed ID: 20144864 [TBL] [Abstract][Full Text] [Related]
14. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production. Saratale GD; Saratale RG; Lo YC; Chang JS Biotechnol Prog; 2010; 26(2):406-16. PubMed ID: 19941342 [TBL] [Abstract][Full Text] [Related]
15. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge. Chairattanamanokorn P; Tapananont S; Detjaroen S; Sangkhatim J; Anurakpongsatorn P; Sirirote P Appl Biochem Biotechnol; 2012 Jan; 166(2):389-401. PubMed ID: 22101444 [TBL] [Abstract][Full Text] [Related]
16. Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Wang A; Gao L; Ren N; Xu J; Liu C Biotechnol Lett; 2009 Sep; 31(9):1321-6. PubMed ID: 19466556 [TBL] [Abstract][Full Text] [Related]
17. [Hydrolysis of cellulose by fungi. II. Production of cellulases by Trichoderma harzianum by fermentation in liquid media]. Roussos S; Raimbault M Ann Microbiol (Paris); 1982; 133(3):465-74. PubMed ID: 6891887 [TBL] [Abstract][Full Text] [Related]
18. Production of cellulosic ethanol and hydrogen from solid-state enzymatic treated cornstalk: a two-stage process. Pan C; Zhang M; Fan Y; Xing Y; Hou H J Agric Food Chem; 2009 Apr; 57(7):2732-8. PubMed ID: 19334755 [TBL] [Abstract][Full Text] [Related]
19. Effect of media composition and growth conditions on production of beta-glucosidase by Aspergillus niger C-6. García-Kirchner O; Segura-Granados M; Rodríguez-Pascual P Appl Biochem Biotechnol; 2005; 121-124():347-59. PubMed ID: 15917612 [TBL] [Abstract][Full Text] [Related]
20. Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility. Tommasi T; Sassi G; Ruggeri B Water Sci Technol; 2008; 58(8):1623-8. PubMed ID: 19001717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]