BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18417395)

  • 1. The ontogeny of physiological response to light intensity in early stage spiny lobster (Jasus edwardsii) larvae.
    Bermudes M; Ritar AJ; Carter CG
    Comp Biochem Physiol A Mol Integr Physiol; 2008 May; 150(1):40-5. PubMed ID: 18417395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ontogeny of physiological response to temperature in early stage spiny lobster (Jasus edwardsii) larvae.
    Bermudes M; Ritar AJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jun; 138(2):161-8. PubMed ID: 15275650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae.
    Johnston DJ; Ritar AJ; Thomas CW
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Jun; 138(2):137-44. PubMed ID: 15193268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical composition during growth and starvation of early larval stages of cultured spiny lobster (Jasus edwardsii) phyllosoma.
    Ritar AJ; Dunstan GA; Crear BJ; Brown MR
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Oct; 136(2):353-70. PubMed ID: 14511754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of red king crab larvae: phototaxis, geotaxis and rheotaxis.
    Shirley SM; Shirley TC
    Mar Behav Physiol; 1988; 13(4):369-88. PubMed ID: 11539849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny.
    Jensen MA; Fitzgibbon QP; Carter CG; Adams LR
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):191-8. PubMed ID: 23756212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae).
    Day RD; McCauley RD; Fitzgibbon QP; Semmens JM
    Sci Rep; 2016 Mar; 6():22723. PubMed ID: 26947006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial diversity of mid-stage Palinurid phyllosoma from Great Barrier Reef waters.
    Payne MS; Høj L; Wietz M; Hall MR; Sly L; Bourne DG
    J Appl Microbiol; 2008 Aug; 105(2):340-50. PubMed ID: 18298531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oral and integumental uptake of free exogenous glycine by the Japanese spiny lobster Panulirus japonicus phyllosoma larvae.
    Souza JC; Strüssmann CA; Takashima F; Satoh H; Sekine S; Shima Y; Matsuda H
    J Exp Biol; 2010 Jun; 213(11):1859-67. PubMed ID: 20472773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal variation in the specific dynamic action of juvenile New Zealand rock lobsters, Jasus edwardsii.
    Radford CA; Marsden ID; Davison W
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Sep; 139(1):1-9. PubMed ID: 15471675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximate control of diel vertical migration in Phyllosoma larvae of the Caribbean spiny lobster Panulirus argus.
    Ziegler TA; Cohen JH; Forward RB
    Biol Bull; 2010 Dec; 219(3):207-19. PubMed ID: 21183442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of turbulence on feeding intensity and survival of Japanese flounder Paralichthys olivaceus pelagic larvae.
    Oshima M; Kato Y; Masuda R; Kimura S; Yamashita Y
    J Fish Biol; 2009 Nov; 75(7):1639-47. PubMed ID: 20738639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying potential prey of the pelagic larvae of the spiny lobster Jasus edwardsii using signature lipids.
    Jeffs AG; Nichols PD; Mooney BD; Phillips KL; Phleger CF
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Apr; 137(4):487-507. PubMed ID: 15082000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating the ontogeny of functional morphology and prey selection with larval mortality in Amphiprion frenatus.
    Anto J; Turingan RG
    J Morphol; 2010 Jun; 271(6):682-96. PubMed ID: 20101727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of digestive enzyme profiles to various scenarios of food availability in newly-hatched Stage I phyllosoma larvae of the tropical spiny lobster Panulirus ornatus.
    Genodepa J; Zeng C; Militz TA; Southgate PC
    Comp Biochem Physiol B Biochem Mol Biol; 2022; 261():110751. PubMed ID: 35489666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of feeding and hypoxia on cardiac performance and gastrointestinal blood flow during critical speed swimming in the sea bass Dicentrarchus labrax.
    Dupont-Prinet A; Claireaux G; McKenzie DJ
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Oct; 154(2):233-40. PubMed ID: 19559805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducers of settlement and moulting in post-larval spiny lobster.
    Stanley JA; Hesse J; Hinojosa IA; Jeffs AG
    Oecologia; 2015 Jul; 178(3):685-97. PubMed ID: 25682060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitization and habituation of the swimming behavior in ascidian larvae to light.
    Tsuda M; Kawakami I; Shiraishi S
    Zoolog Sci; 2003 Jan; 20(1):13-22. PubMed ID: 12560596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mismatch of thermal optima between performance measures, life stages and species of spiny lobster.
    Twiname S; Fitzgibbon QP; Hobday AJ; Carter CG; Oellermann M; Pecl GT
    Sci Rep; 2020 Dec; 10(1):21235. PubMed ID: 33277537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiorespiratory ontogeny and response to environmental hypoxia of larval spiny lobster, Sagmariasus verreauxi.
    Fitzgibbon QP; Ruff N; Battaglene SC
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jun; 184():76-82. PubMed ID: 25683612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.