These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18417395)
1. The ontogeny of physiological response to light intensity in early stage spiny lobster (Jasus edwardsii) larvae. Bermudes M; Ritar AJ; Carter CG Comp Biochem Physiol A Mol Integr Physiol; 2008 May; 150(1):40-5. PubMed ID: 18417395 [TBL] [Abstract][Full Text] [Related]
2. The ontogeny of physiological response to temperature in early stage spiny lobster (Jasus edwardsii) larvae. Bermudes M; Ritar AJ Comp Biochem Physiol A Mol Integr Physiol; 2004 Jun; 138(2):161-8. PubMed ID: 15275650 [TBL] [Abstract][Full Text] [Related]
3. Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae. Johnston DJ; Ritar AJ; Thomas CW Comp Biochem Physiol B Biochem Mol Biol; 2004 Jun; 138(2):137-44. PubMed ID: 15193268 [TBL] [Abstract][Full Text] [Related]
4. Biochemical composition during growth and starvation of early larval stages of cultured spiny lobster (Jasus edwardsii) phyllosoma. Ritar AJ; Dunstan GA; Crear BJ; Brown MR Comp Biochem Physiol A Mol Integr Physiol; 2003 Oct; 136(2):353-70. PubMed ID: 14511754 [TBL] [Abstract][Full Text] [Related]
5. Behavior of red king crab larvae: phototaxis, geotaxis and rheotaxis. Shirley SM; Shirley TC Mar Behav Physiol; 1988; 13(4):369-88. PubMed ID: 11539849 [TBL] [Abstract][Full Text] [Related]
6. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny. Jensen MA; Fitzgibbon QP; Carter CG; Adams LR Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):191-8. PubMed ID: 23756212 [TBL] [Abstract][Full Text] [Related]
7. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae). Day RD; McCauley RD; Fitzgibbon QP; Semmens JM Sci Rep; 2016 Mar; 6():22723. PubMed ID: 26947006 [TBL] [Abstract][Full Text] [Related]
8. Microbial diversity of mid-stage Palinurid phyllosoma from Great Barrier Reef waters. Payne MS; Høj L; Wietz M; Hall MR; Sly L; Bourne DG J Appl Microbiol; 2008 Aug; 105(2):340-50. PubMed ID: 18298531 [TBL] [Abstract][Full Text] [Related]
9. Oral and integumental uptake of free exogenous glycine by the Japanese spiny lobster Panulirus japonicus phyllosoma larvae. Souza JC; Strüssmann CA; Takashima F; Satoh H; Sekine S; Shima Y; Matsuda H J Exp Biol; 2010 Jun; 213(11):1859-67. PubMed ID: 20472773 [TBL] [Abstract][Full Text] [Related]
10. Temporal variation in the specific dynamic action of juvenile New Zealand rock lobsters, Jasus edwardsii. Radford CA; Marsden ID; Davison W Comp Biochem Physiol A Mol Integr Physiol; 2004 Sep; 139(1):1-9. PubMed ID: 15471675 [TBL] [Abstract][Full Text] [Related]
11. Proximate control of diel vertical migration in Phyllosoma larvae of the Caribbean spiny lobster Panulirus argus. Ziegler TA; Cohen JH; Forward RB Biol Bull; 2010 Dec; 219(3):207-19. PubMed ID: 21183442 [TBL] [Abstract][Full Text] [Related]
12. Effect of turbulence on feeding intensity and survival of Japanese flounder Paralichthys olivaceus pelagic larvae. Oshima M; Kato Y; Masuda R; Kimura S; Yamashita Y J Fish Biol; 2009 Nov; 75(7):1639-47. PubMed ID: 20738639 [TBL] [Abstract][Full Text] [Related]
13. Identifying potential prey of the pelagic larvae of the spiny lobster Jasus edwardsii using signature lipids. Jeffs AG; Nichols PD; Mooney BD; Phillips KL; Phleger CF Comp Biochem Physiol B Biochem Mol Biol; 2004 Apr; 137(4):487-507. PubMed ID: 15082000 [TBL] [Abstract][Full Text] [Related]
14. Relating the ontogeny of functional morphology and prey selection with larval mortality in Amphiprion frenatus. Anto J; Turingan RG J Morphol; 2010 Jun; 271(6):682-96. PubMed ID: 20101727 [TBL] [Abstract][Full Text] [Related]
15. Responses of digestive enzyme profiles to various scenarios of food availability in newly-hatched Stage I phyllosoma larvae of the tropical spiny lobster Panulirus ornatus. Genodepa J; Zeng C; Militz TA; Southgate PC Comp Biochem Physiol B Biochem Mol Biol; 2022; 261():110751. PubMed ID: 35489666 [TBL] [Abstract][Full Text] [Related]
16. Effects of feeding and hypoxia on cardiac performance and gastrointestinal blood flow during critical speed swimming in the sea bass Dicentrarchus labrax. Dupont-Prinet A; Claireaux G; McKenzie DJ Comp Biochem Physiol A Mol Integr Physiol; 2009 Oct; 154(2):233-40. PubMed ID: 19559805 [TBL] [Abstract][Full Text] [Related]
17. Inducers of settlement and moulting in post-larval spiny lobster. Stanley JA; Hesse J; Hinojosa IA; Jeffs AG Oecologia; 2015 Jul; 178(3):685-97. PubMed ID: 25682060 [TBL] [Abstract][Full Text] [Related]
18. Sensitization and habituation of the swimming behavior in ascidian larvae to light. Tsuda M; Kawakami I; Shiraishi S Zoolog Sci; 2003 Jan; 20(1):13-22. PubMed ID: 12560596 [TBL] [Abstract][Full Text] [Related]
19. Mismatch of thermal optima between performance measures, life stages and species of spiny lobster. Twiname S; Fitzgibbon QP; Hobday AJ; Carter CG; Oellermann M; Pecl GT Sci Rep; 2020 Dec; 10(1):21235. PubMed ID: 33277537 [TBL] [Abstract][Full Text] [Related]
20. Cardiorespiratory ontogeny and response to environmental hypoxia of larval spiny lobster, Sagmariasus verreauxi. Fitzgibbon QP; Ruff N; Battaglene SC Comp Biochem Physiol A Mol Integr Physiol; 2015 Jun; 184():76-82. PubMed ID: 25683612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]