BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18417595)

  • 1. Sindbis virus conformational changes induced by a neutralizing anti-E1 monoclonal antibody.
    Hernandez R; Paredes A; Brown DT
    J Virol; 2008 Jun; 82(12):5750-60. PubMed ID: 18417595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural rearrangement of infecting Sindbis virions at the cell surface: mapping of newly accessible epitopes.
    Meyer WJ; Johnston RE
    J Virol; 1993 Sep; 67(9):5117-25. PubMed ID: 7688818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus E1 glycoprotein.
    Schmaljohn AL; Kokubun KM; Cole GA
    Virology; 1983 Oct; 130(1):144-54. PubMed ID: 6195815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conformational change in Sindbis virus glycoproteins E1 and E2 is detected at the plasma membrane as a consequence of early virus-cell interaction.
    Flynn DC; Meyer WJ; Mackenzie JM; Johnston RE
    J Virol; 1990 Aug; 64(8):3643-53. PubMed ID: 1695253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational alteration of Sindbis virion glycoproteins induced by heat, reducing agents, or low pH.
    Meyer WJ; Gidwitz S; Ayers VK; Schoepp RJ; Johnston RE
    J Virol; 1992 Jun; 66(6):3504-13. PubMed ID: 1374808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion.
    Paredes AM; Ferreira D; Horton M; Saad A; Tsuruta H; Johnston R; Klimstra W; Ryman K; Hernandez R; Chiu W; Brown DT
    Virology; 2004 Jul; 324(2):373-86. PubMed ID: 15207623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH.
    Edwards J; Mann E; Brown DT
    J Virol; 1983 Mar; 45(3):1090-7. PubMed ID: 6834477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of antigenically important domains in the glycoproteins of Sindbis virus by analysis of antibody escape variants.
    Strauss EG; Stec DS; Schmaljohn AL; Strauss JH
    J Virol; 1991 Sep; 65(9):4654-64. PubMed ID: 1714515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies.
    Dietrich MH; Ogden KM; Katen SP; Reiss K; Sutherland DM; Carnahan RH; Goff M; Cooper T; Dermody TS; Stehle T
    J Virol; 2017 Feb; 91(4):. PubMed ID: 27928010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of Epitope-Specific Mechanisms of Neutralization of Influenza Virus by Intact IgG and Fab Fragments.
    Williams JA; Gui L; Hom N; Mileant A; Lee KK
    J Virol; 2018 Mar; 92(6):. PubMed ID: 29263254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody-mediated activation of Sindbis virus.
    Flynn DC; Olmsted RA; Mackenzie JM; Johnston RE
    Virology; 1988 Sep; 166(1):82-90. PubMed ID: 3413988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of Hepatitis C Virus Envelope Glycoprotein E1 Antigenic Site 314-324 in Complex with Antibody IGH526.
    Kong L; Kadam RU; Giang E; Ruwona TB; Nieusma T; Culhane JC; Stanfield RL; Dawson PE; Wilson IA; Law M
    J Mol Biol; 2015 Aug; 427(16):2617-28. PubMed ID: 26135247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SARS patients-derived human recombinant antibodies to S and M proteins efficiently neutralize SARS-coronavirus infectivity.
    Liang MF; Du RL; Liu JZ; Li C; Zhang QF; Han LL; Yu JS; Duan SM; Wang XF; Wu KX; Xiong ZH; Jin Q; Li DX
    Biomed Environ Sci; 2005 Dec; 18(6):363-74. PubMed ID: 16544518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level.
    Otterstrom JJ; Brandenburg B; Koldijk MH; Juraszek J; Tang C; Mashaghi S; Kwaks T; Goudsmit J; Vogels R; Friesen RH; van Oijen AM
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5143-8. PubMed ID: 25404330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Site Glycoprotein Mutants Inhibit a Late Event in Sindbis Virus Assembly.
    Magliocca J; Vancini R; Hernandez R; Brown DT
    J Virol; 2016 Sep; 90(18):8372-80. PubMed ID: 27412592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of neutralizing monoclonal antibodies on Hantaan virus infection of the macrophage P388D1 cell line.
    Yao JS; Arikawa J; Kariwa H; Yoshimatsu K; Takashima I; Hashimoto N
    Jpn J Vet Res; 1992 Sep; 40(2-3):87-97. PubMed ID: 1284283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is bivalent binding of monoclonal antibodies to different antigenic areas on the hemagglutinin of influenza virus required for neutralization of viral infectivity?
    Yoden S; Kida H; Yanagawa R
    Arch Virol; 1985; 85(3-4):209-16. PubMed ID: 2411245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a lambda gt11 expression library to localize a neutralizing antibody-binding site in glycoprotein E2 of Sindbis virus.
    Wang KS; Strauss JH
    J Virol; 1991 Dec; 65(12):7037-40. PubMed ID: 1719239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatitis C virus E2 has three immunogenic domains containing conformational epitopes with distinct properties and biological functions.
    Keck ZY; Op De Beeck A; Hadlock KG; Xia J; Li TK; Dubuisson J; Foung SK
    J Virol; 2004 Sep; 78(17):9224-32. PubMed ID: 15308717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice.
    Stanley J; Cooper SJ; Griffin DE
    J Virol; 1986 Apr; 58(1):107-15. PubMed ID: 2419592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.