These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18418257)

  • 1. The effects of pitch and pitch strength on an auditory-evoked N1m.
    Soeta Y; Nakagawa S
    Neuroreport; 2008 May; 19(7):783-7. PubMed ID: 18418257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory evoked magnetic fields in relation to iterated rippled noise.
    Soeta Y; Nakagawa S; Tonoike M
    Hear Res; 2005 Jul; 205(1-2):256-61. PubMed ID: 15953534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stimulus frequency and stimulation site on the N1m response of the human auditory cortex.
    Gabriel D; Veuillet E; Ragot R; Schwartz D; Ducorps A; Norena A; Durrant JD; Bonmartin A; Cotton F; Collet L
    Hear Res; 2004 Nov; 197(1-2):55-64. PubMed ID: 15504604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the binaural auditory filter in the human brain.
    Soeta Y; Nakagawa S
    Neuroreport; 2007 Dec; 18(18):1939-43. PubMed ID: 18007191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal integration affects intensity change detection in human auditory cortex.
    Soeta Y; Nakagawa S
    Neuroreport; 2010 Dec; 21(18):1157-61. PubMed ID: 20938362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained BOLD and theta activity in auditory cortex are related to slow stimulus fluctuations rather than to pitch.
    Steinmann I; Gutschalk A
    J Neurophysiol; 2012 Jun; 107(12):3458-67. PubMed ID: 22457459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromagnetic responses associated with perceptual segregation of pitch.
    Johnson BW; Muthukumaraswamy SD; Hautus MJ; Gaetz WC; Cheyne DO
    Neurol Clin Neurophysiol; 2004 Nov; 2004():33. PubMed ID: 16012630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between the neuromagnetic responses to sound energy onset and pitch onset suggests common generators.
    Seither-Preisler A; Krumbholz K; Patterson R; Seither S; Lütkenhöner B
    Eur J Neurosci; 2004 Jun; 19(11):3073-80. PubMed ID: 15182315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The auditory evoked magnetic fields to very high frequency tones.
    Fujioka T; Kakigi R; Gunji A; Takeshima Y
    Neuroscience; 2002; 112(2):367-81. PubMed ID: 12044454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of center frequency and bandwidth on the auditory evoked magnetic field.
    Soeta Y; Nakagawa S; Matsuoka K
    Hear Res; 2006 Aug; 218(1-2):64-71. PubMed ID: 16797895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound level-dependent growth of N1m amplitude with low and high-frequency tones.
    Soeta Y; Nakagawa S
    Neuroreport; 2009 Apr; 20(6):548-52. PubMed ID: 19319005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One set of sounds, two tonotopic maps: exploring auditory cortex with amplitude-modulated tones.
    Weisz N; Keil A; Wienbruch C; Hoffmeister S; Elbert T
    Clin Neurophysiol; 2004 Jun; 115(6):1249-58. PubMed ID: 15134691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial dissociation of changes of level and signal-to-noise ratio in auditory cortex for tones in noise.
    Ernst SM; Verhey JL; Uppenkamp S
    Neuroimage; 2008 Nov; 43(2):321-8. PubMed ID: 18722535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responsiveness of the human auditory cortex to degraded speech sounds: reduction of amplitude resolution vs. additive noise.
    Miettinen I; Alku P; Salminen N; May PJ; Tiitinen H
    Brain Res; 2011 Jan; 1367():298-309. PubMed ID: 20969833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric lateral inhibitory neural activity in the auditory system: a magnetoencephalographic study.
    Okamoto H; Kakigi R; Gunji A; Pantev C
    BMC Neurosci; 2007 May; 8():33. PubMed ID: 17509141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disentangling the effects of phonation and articulation: hemispheric asymmetries in the auditory N1m response of the human brain.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    BMC Neurosci; 2005 Oct; 6():62. PubMed ID: 16225699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interhemispheric support during demanding auditory signal-in-noise processing.
    Stracke H; Okamoto H; Pantev C
    Cereb Cortex; 2009 Jun; 19(6):1440-7. PubMed ID: 18936273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range.
    Krishnan A; Gandour JT; Suresh CH
    Neuroscience; 2015 Sep; 303():433-45. PubMed ID: 26166727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Right hemispheric laterality of human 40 Hz auditory steady-state responses.
    Ross B; Herdman AT; Pantev C
    Cereb Cortex; 2005 Dec; 15(12):2029-39. PubMed ID: 15772375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.