BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 18418580)

  • 41. Cytochrome P-450-dependent bioactivation of 1,1-dichloroethylene to a reactive epoxide in human lung and liver microsomes.
    Dowsley TF; Reid K; Petsikas D; Ulreich JB; Fisher RL; Forkert PG
    J Pharmacol Exp Ther; 1999 May; 289(2):641-8. PubMed ID: 10215634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional characterization and tissue expression of marmoset cytochrome P450 2E1.
    Uehara S; Uno Y; Tomioka E; Inoue T; Sasaki E; Yamazaki H
    Biopharm Drug Dispos; 2017 Sep; 38(6):394-397. PubMed ID: 28474789
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of cytochrome P450 2E1 in the metabolism of 1,1,2,3,3,3-hexafluoropropyl methyl ether.
    Köster U; Speerschneider P; Kerssebaum R; Wittmann H; Dekant W
    Drug Metab Dispos; 1994; 22(5):667-72. PubMed ID: 7835215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. N7-glycidamide-guanine DNA adduct formation by orally ingested acrylamide in rats: a dose-response study encompassing human diet-related exposure levels.
    Watzek N; Böhm N; Feld J; Scherbl D; Berger F; Merz KH; Lampen A; Reemtsma T; Tannenbaum SR; Skipper PL; Baum M; Richling E; Eisenbrand G
    Chem Res Toxicol; 2012 Feb; 25(2):381-90. PubMed ID: 22211389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of the human liver microsomal cytochrome P450s involved in the metabolism of N-nitrosodi-n-propylamine.
    Teiber JF; Hollenberg PF
    Carcinogenesis; 2000 Aug; 21(8):1559-66. PubMed ID: 10910959
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reconstructing hepatic metabolic profile and glutathione-mediated metabolic fate of acrylamide.
    Wu Y; Li Y; Jia W; Zhu L; Wan X; Gao S; Zhang Y
    Environ Pollut; 2023 Nov; 337():122508. PubMed ID: 37673322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of estimated dietary intake of acrylamide with hemoglobin adducts of acrylamide and glycidamide.
    Bjellaas T; Olesen PT; Frandsen H; Haugen M; Stølen LH; Paulsen JE; Alexander J; Lundanes E; Becher G
    Toxicol Sci; 2007 Jul; 98(1):110-7. PubMed ID: 17449897
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human liver microsomes are efficient catalysts of 1,3-butadiene oxidation: evidence for major roles by cytochromes P450 2A6 and 2E1.
    Duescher RJ; Elfarra AA
    Arch Biochem Biophys; 1994 Jun; 311(2):342-9. PubMed ID: 8203896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of cytochrome P450 2E1 in the species-dependent biotransformation of 1,2-dichloro-1,1,2-trifluoroethane in rats and mice.
    Dekant W; Assmann M; Urban G
    Toxicol Appl Pharmacol; 1995 Dec; 135(2):200-7. PubMed ID: 8545828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Benzene metabolism in human lung cell lines BEAS-2B and A549 and cells overexpressing CYP2F1.
    Sheets PL; Yost GS; Carlson GP
    J Biochem Mol Toxicol; 2004; 18(2):92-9. PubMed ID: 15122651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Renal tumorigenicity of 1,1-dichloroethene in mice: the role of male-specific expression of cytochrome P450 2E1 in the renal bioactivation of 1,1-dichloroethene.
    Speerschneider P; Dekant W
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):48-56. PubMed ID: 7839370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acrylamide and glycidamide: genotoxic effects in V79-cells and human blood.
    Baum M; Fauth E; Fritzen S; Herrmann A; Mertes P; Merz K; Rudolphi M; Zankl H; Eisenbrand G
    Mutat Res; 2005 Feb; 580(1-2):61-9. PubMed ID: 15668108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chlorzoxazone: an in vitro and in vivo substrate probe for liver CYP2E1.
    Lucas D; Menez JF; Berthou F
    Methods Enzymol; 1996; 272():115-23. PubMed ID: 8791768
    [No Abstract]   [Full Text] [Related]  

  • 54. Metabolism of ethyl carbamate by pulmonary cytochrome P450 and carboxylesterase isozymes: involvement of CYP2E1 and hydrolase A.
    Forkert PG; Lee RP
    Toxicol Appl Pharmacol; 1997 Oct; 146(2):245-54. PubMed ID: 9344892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Approaches to acrylamide physiologically based toxicokinetic modeling for exploring child-adult dosimetry differences.
    Walker K; Hattis D; Russ A; Sonawane B; Ginsberg G
    J Toxicol Environ Health A; 2007 Dec; 70(24):2033-55. PubMed ID: 18049993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytochrome P450 isozymes involved in lisofylline metabolism to pentoxifylline in human liver microsomes.
    Lee SH; Slattery JT
    Drug Metab Dispos; 1997 Dec; 25(12):1354-8. PubMed ID: 9394024
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Acrylamide Treatment on Cyp2e1 Expression and Redox Status in Rat Hepatocytes.
    Marković Filipović J; Miler M; Kojić D; Karan J; Ivelja I; Čukuranović Kokoris J; Matavulj M
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genotoxicity of acrylamide and its metabolite glycidamide administered in drinking water to male and female Big Blue mice.
    Manjanatha MG; Aidoo A; Shelton SD; Bishop ME; McDaniel LP; Lyn-Cook LE; Doerge DR
    Environ Mol Mutagen; 2006 Jan; 47(1):6-17. PubMed ID: 15957192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a physiologically-based toxicokinetic model of acrylamide and glycidamide in rats and humans.
    Sweeney LM; Kirman CR; Gargas ML; Carson ML; Tardiff RG
    Food Chem Toxicol; 2010 Feb; 48(2):668-85. PubMed ID: 19948202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic oxidation and toxification of N-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1.
    Hyland R; Gescher A; Thummel K; Schiller C; Jheeta P; Mynett K; Smith AW; Mráz J
    Mol Pharmacol; 1992 Feb; 41(2):259-66. PubMed ID: 1538706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.