These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18418635)

  • 1. Delta band contribution in cue based single trial classification of real and imaginary wrist movements.
    Vuckovic A; Sepulveda F
    Med Biol Eng Comput; 2008 Jun; 46(6):529-39. PubMed ID: 18418635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-stage four-class BCI based on imaginary movements of the left and the right wrist.
    Vučković A; Sepulveda F
    Med Eng Phys; 2012 Sep; 34(7):964-71. PubMed ID: 22119365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of salient points in movements on the constraints in bimanual coordination.
    Zheng Y; Muraoka T; Nakagawa K; Kato K; Kanosue K
    Exp Brain Res; 2018 May; 236(5):1461-1470. PubMed ID: 29546653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the Leap Motion Controller using markered motion capture technology.
    Smeragliuolo AH; Hill NJ; Disla L; Putrino D
    J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic comparison of the wrist movements that are possible with a biomechatronics wrist prosthesis and a body-powered prosthesis: a preliminary study.
    Abd Razak NA; Abu Osman NA; Wan Abas WA
    Disabil Rehabil Assist Technol; 2013 May; 8(3):255-60. PubMed ID: 22830946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the position of the distal portion of the ulna in lateral projection radiographs of the wrist: analysis of the influence of pronation-supination and flexion-extension on the pisoscaphoid and the ulnotriquetral distances: a cadaver study.
    Ertl-Wagner BB; Stäbler A; Brossmann J; Trudell D; Resnick D
    Invest Radiol; 2001 Oct; 36(10):612-8. PubMed ID: 11577272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of imagined single-joint movements in a person with high-level tetraplegia.
    Ajiboye AB; Simeral JD; Donoghue JP; Hochberg LR; Kirsch RF
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2755-65. PubMed ID: 22851229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-contraction of the pronator teres and extensor carpi radialis during wrist extension movements in humans.
    Fujii H; Kobayashi S; Sato T; Shinozaki K; Naito A
    J Electromyogr Kinesiol; 2007 Feb; 17(1):80-9. PubMed ID: 16516494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cineradiographic study of wrist motion].
    Imamura K
    Nihon Seikeigeka Gakkai Zasshi; 1987 May; 61(5):499-510. PubMed ID: 3655475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion.
    do Nascimento OF; Farina D
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2675-8. PubMed ID: 18990639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-trial discrimination of type and speed of wrist movements from EEG recordings.
    Gu Y; Dremstrup K; Farina D
    Clin Neurophysiol; 2009 Aug; 120(8):1596-600. PubMed ID: 19535289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications.
    Vuckovic A; Sepulveda F
    Clin Neurophysiol; 2008 Feb; 119(2):446-58. PubMed ID: 18065266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG classification of different imaginary movements within the same limb.
    Yong X; Menon C
    PLoS One; 2015; 10(4):e0121896. PubMed ID: 25830611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of tracking marker locations on three-dimensional wrist kinematics.
    Turner J; Forrester SE; Mears AC; Roberts JR
    J Sci Med Sport; 2020 Oct; 23(10):985-990. PubMed ID: 32284293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal functional range of motion of upper limb joints during performance of three feeding activities.
    Safaee-Rad R; Shwedyk E; Quanbury AO; Cooper JE
    Arch Phys Med Rehabil; 1990 Jun; 71(7):505-9. PubMed ID: 2350221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marker placement to describe the wrist movements during activities of daily living in cyclical tasks.
    Murgia A; Kyberd PJ; Chappell PH; Light CM
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):248-54. PubMed ID: 15003339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlimb differences in coordination of rapid wrist/forearm movements.
    Srinivasan GA; Embar T; Sainburg R
    Exp Brain Res; 2020 Mar; 238(3):713-725. PubMed ID: 32060564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Time, Frequency and ICA Based Features and Five Classifiers for Wrist Movement Classification in EEG Signals.
    Navarro I; Hubais B; Sepulveda F
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2118-21. PubMed ID: 17282647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of measurement accuracy between two wrist goniometer systems during pronation and supination.
    Johnson PW; Jonsson P; Hagberg M
    J Electromyogr Kinesiol; 2002 Oct; 12(5):413-20. PubMed ID: 12223175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of wrist flexion and extension torques in different forearm positions.
    Yoshii Y; Yuine H; Kazuki O; Tung WL; Ishii T
    Biomed Eng Online; 2015 Dec; 14():115. PubMed ID: 26830913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.