BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 18418748)

  • 21. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification.
    Novo LP; Gurgel LV; Marabezi K; Curvelo AA
    Bioresour Technol; 2011 Nov; 102(21):10040-6. PubMed ID: 21906937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures.
    Li Z; Ge Y
    Int J Biol Macromol; 2012 Dec; 51(5):1116-20. PubMed ID: 22982809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse.
    Xu F; Sun JX; Liu CF; Sun RC
    Carbohydr Res; 2006 Feb; 341(2):253-61. PubMed ID: 16313892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites.
    Trindade WG; Hoareau W; Megiatto JD; Razera IA; Castellan A; Frollini E
    Biomacromolecules; 2005; 6(5):2485-96. PubMed ID: 16153084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.
    Baptista C; Robert D; Duarte AP
    Bioresour Technol; 2008 May; 99(7):2349-56. PubMed ID: 17604620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mild acetosolv process to fractionate bamboo for the biorefinery: structural and antioxidant properties of the dissolved lignin.
    Li MF; Sun SN; Xu F; Sun RC
    J Agric Food Chem; 2012 Feb; 60(7):1703-12. PubMed ID: 22283627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of chelating agents through the enzymatic oxidation of acetosolv sugarcane bagasse lignin.
    Gonçalves AR; Soto-Oviedo MA
    Appl Biochem Biotechnol; 2002; 98-100():365-71. PubMed ID: 12018263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium.
    Liu CF; Sun RC; Zhang AP; Ren JL; Wang XA; Qin MH; Chao ZN; Luo W
    Carbohydr Res; 2007 May; 342(7):919-26. PubMed ID: 17324384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.
    Hernández-Salas JM; Villa-Ramírez MS; Veloz-Rendón JS; Rivera-Hernández KN; González-César RA; Plascencia-Espinosa MA; Trejo-Estrada SR
    Bioresour Technol; 2009 Feb; 100(3):1238-45. PubMed ID: 19000863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation.
    Vásquez MP; da Silva JN; de Souza MB; Pereira N
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):141-53. PubMed ID: 18478383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of post-harvest sugarcane residue for ethanol production.
    Dawson L; Boopathy R
    Bioresour Technol; 2007 Jul; 98(9):1695-9. PubMed ID: 16935500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions.
    Ruzene DS; Gonçalves AR; Teixeira JA; de Amorim MT
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):573-82. PubMed ID: 18478417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic and fungal treatments on sugarcane bagasse for the production of mechanical pulps.
    Ramos J; Rojas T; Navarro F; Dávalos F; Sanjuán R; Rutiaga J; Young RA
    J Agric Food Chem; 2004 Aug; 52(16):5057-62. PubMed ID: 15291475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH).
    Rodrigues Rde C; Rocha GJ; Rodrigues D; Filho HJ; Felipe Md; Pessoa A
    Bioresour Technol; 2010 Feb; 101(4):1247-53. PubMed ID: 19846294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulating the properties and structure of lignins produced by alkaline delignification of sugarcane bagasse pretreated with two different mineral acids at pilot-scale.
    Nunes da Silva VF; Farias de Menezes F; Gonçalves AR; Martín C; de Moraes Rocha GJ
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130111. PubMed ID: 38346614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of technical lignins by two- and three-dimensional NMR spectroscopy.
    Liitiä TM; Maunu SL; Hortling B; Toikka M; Kilpeläinen I
    J Agric Food Chem; 2003 Apr; 51(8):2136-43. PubMed ID: 12670147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An alternative application to the Portuguese agro-industrial residue: wheat straw.
    Ruzene DS; Silva DP; Vicente AA; Gonçalves AR; Teixeira JA
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):85-96. PubMed ID: 18401755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin.
    Du FL; Du QS; Dai J; Tang PD; Li YM; Long SY; Xie NZ; Wang QY; Huang RB
    PLoS One; 2018; 13(6):e0197188. PubMed ID: 29856735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microwave-assisted extraction of lignin from triticale straw: optimization and microwave effects.
    Monteil-Rivera F; Huang GH; Paquet L; Deschamps S; Beaulieu C; Hawari J
    Bioresour Technol; 2012 Jan; 104():775-82. PubMed ID: 22154584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.