These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18419012)

  • 41. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent.
    Leiviskä T; Nurmesniemi H; Pöykiö R; Rämö J; Kuokkanen T; Pellinen J
    Water Res; 2008 Aug; 42(14):3952-60. PubMed ID: 18707750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microsieving in primary treatment: effect of chemical dosing.
    Väänänen J; Cimbritz M; la Cour Jansen J
    Water Sci Technol; 2016; 74(2):438-47. PubMed ID: 27438249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrating organic micropollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal.
    Altmann J; Sperlich A; Jekel M
    Water Res; 2015 Nov; 84():58-65. PubMed ID: 26210030
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relative performance of duckweed ponds and rock filtration as advanced in-pond wastewater treatment processes for upgrading waste stabilisation pond effluent: a pilot study.
    Short MD; Cromar NJ; Nixon JB; Fallowfield HJ
    Water Sci Technol; 2007; 55(11):111-9. PubMed ID: 17591203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production.
    Cho S; Luong TT; Lee D; Oh YK; Lee T
    Bioresour Technol; 2011 Sep; 102(18):8639-45. PubMed ID: 21474308
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater.
    Dobbie KE; Heal KV; Aumônier J; Smith KA; Johnston A; Younger PL
    Chemosphere; 2009 May; 75(6):795-800. PubMed ID: 19195678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimisation of Noosa BNR plant to improve performance and reduce operating costs.
    Thomas M; Wright P; Blackall L; Urbain V; Keller J
    Water Sci Technol; 2003; 47(12):141-8. PubMed ID: 12926681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A dynamic physicochemical model for chemical phosphorus removal.
    Hauduc H; Takács I; Smith S; Szabo A; Murthy S; Daigger GT; Spérandio M
    Water Res; 2015 Apr; 73():157-70. PubMed ID: 25655322
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of COD/TP ratio on biological nutrient removal in A²O and SBR processes coupled with microfiltration and effluent reuse potential.
    Lu Q; de Toledo RA; Shim H
    Environ Technol; 2016; 37(12):1461-6. PubMed ID: 26581582
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada.
    Lishman L; Smyth SA; Sarafin K; Kleywegt S; Toito J; Peart T; Lee B; Servos M; Beland M; Seto P
    Sci Total Environ; 2006 Aug; 367(2-3):544-58. PubMed ID: 16697441
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced phosphorus removal by microbial-collaborating sponge iron.
    Wang Y; Li J; Zhai S; Wei Z; Feng J
    Water Sci Technol; 2015; 72(8):1257-65. PubMed ID: 26465294
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An integrated wastewater reuse concept combining natural reclamation techniques, membrane filtration and metal oxide adsorption.
    Sperlich A; Zheng X; Ernst M; Jekel M
    Water Sci Technol; 2008; 57(6):909-14. PubMed ID: 18413952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment.
    Gutierrez O; Park D; Sharma KR; Yuan Z
    Water Res; 2010 Jun; 44(11):3467-75. PubMed ID: 20434190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration.
    Arnaldos M; Pagilla K
    Water Res; 2010 Oct; 44(18):5306-15. PubMed ID: 20643469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of solids residence time on dynamic responses in chemical P removal.
    Conidi D; Parker WJ; Smith S
    Water Environ Res; 2019 Mar; 91(3):250-258. PubMed ID: 30624834
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphate complexation model and its implications for chemical phosphorus removal.
    Smith S; Takács I; Murthy S; Daigger GT; Szabó A
    Water Environ Res; 2008 May; 80(5):428-38. PubMed ID: 18605382
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Application of GFH in the municipal effluent reuse for landscape].
    Li N; Yang J; Zhao X; Cheng XZ; Chang J; Gan YP
    Huan Jing Ke Xue; 2010 Oct; 31(10):2354-9. PubMed ID: 21229745
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of slaughterhouse plant wastewater by using a membrane bioreactor.
    Gürel L; Büyükgüngör H
    Water Sci Technol; 2011; 64(1):214-9. PubMed ID: 22053477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Slow sand filtration of secondary clarifier effluent for wastewater reuse.
    Langenbach K; Kuschk P; Horn H; Kästner M
    Environ Sci Technol; 2009 Aug; 43(15):5896-901. PubMed ID: 19731694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Application of BAF-BAC process in advanced treatment of secondary effluent of refinery processing factory].
    Wu J; Sun C; Ma J; Qin Y
    Huan Jing Ke Xue; 2003 Nov; 24(6):135-8. PubMed ID: 14768581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.