BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18419013)

  • 1. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part II--mechanism.
    Newcombe RL; Strawn DG; Grant TM; Childers SE; Möller G
    Water Environ Res; 2008 Mar; 80(3):248-56. PubMed ID: 18419013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part I--performance.
    Newcombe RL; Rule RA; Hart BK; Möller G
    Water Environ Res; 2008 Mar; 80(3):238-47. PubMed ID: 18419012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury removal from municipal secondary effluent with hydrous ferric oxide reactive filtration.
    Beutel MW; Dent SR; Newcombe RL; Möller G
    Water Environ Res; 2019 Feb; 91(2):132-143. PubMed ID: 30735297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrous ferric oxide nanoparticles hosted porous polyethersulfone adsorptive membrane: chromium (VI) adsorptive studies and its applicability for water/wastewater treatment.
    Abdullah N; Yusof N; Abu Shah MH; Wan Ikhsan SN; Ng ZC; Maji S; Lau WJ; Jaafar J; Ismail AF; Ariga K
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20386-20399. PubMed ID: 31102226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-ozone catalytic oxidation reactive filtration of municipal wastewater at field pilot and full-scale with high-efficiency pollutant removal and potential negative CO
    Baker MC; McCarthy D; Taslakyan L; Henchion G; Mannion R; Strawn DG; Möller G
    Water Environ Res; 2023 May; 95(5):e10876. PubMed ID: 37142261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar-integrated reactive filtration of wastewater for P removal and recovery, micropollutant catalytic oxidation, and negative CO
    Taslakyan L; Baker MC; Strawn DG; Möller G
    Water Environ Res; 2023 Dec; 95(12):e10962. PubMed ID: 38153197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.
    Gnirss R; Lesjean B; Adam C; Buisson H
    Water Sci Technol; 2003; 47(12):133-9. PubMed ID: 12926680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced phosphorus removal by microbial-collaborating sponge iron.
    Wang Y; Li J; Zhai S; Wei Z; Feng J
    Water Sci Technol; 2015; 72(8):1257-65. PubMed ID: 26465294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment.
    Bashar R; Gungor K; Karthikeyan KG; Barak P
    Chemosphere; 2018 Apr; 197():280-290. PubMed ID: 29353678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar integrated reactive filtration of wastewater for P removal and recovery, micropollutant catalytic oxidation, and negative CO
    Yu P; Baker MC; Crump AR; Vogler M; Strawn DG; Möller G
    Water Environ Res; 2023 Sep; 95(9):e10926. PubMed ID: 37696540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application of GFH in the municipal effluent reuse for landscape].
    Li N; Yang J; Zhao X; Cheng XZ; Chang J; Gan YP
    Huan Jing Ke Xue; 2010 Oct; 31(10):2354-9. PubMed ID: 21229745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of municipal wastewater using a contact oxidation filtration separation integrated bioreactor.
    Li ZH; Yang K; Yang XJ; Li L
    J Environ Manage; 2010 May; 91(5):1237-42. PubMed ID: 20189294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate complexation model and its implications for chemical phosphorus removal.
    Smith S; Takács I; Murthy S; Daigger GT; Szabó A
    Water Environ Res; 2008 May; 80(5):428-38. PubMed ID: 18605382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating organic micropollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal.
    Altmann J; Sperlich A; Jekel M
    Water Res; 2015 Nov; 84():58-65. PubMed ID: 26210030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated wastewater reuse concept combining natural reclamation techniques, membrane filtration and metal oxide adsorption.
    Sperlich A; Zheng X; Ernst M; Jekel M
    Water Sci Technol; 2008; 57(6):909-14. PubMed ID: 18413952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorbent obtained from CEPT sludge in wastewater chemically enhanced treatment.
    Xu GR; Zhang WT; Li GB
    Water Res; 2005 Dec; 39(20):5175-85. PubMed ID: 16310821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption of phosphorus from wastewater by aged refuse excavated from municipal solid waste landfill.
    Zhao YC; Shao F
    J Environ Sci (China); 2005; 17(1):25-9. PubMed ID: 15900752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of phosphorus from trickling filter effluent by electrocoagulation.
    Stafford B; Dotro G; Vale P; Jefferson B; Jarvis P
    Environ Technol; 2014; 35(21-24):3139-46. PubMed ID: 25244142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous removal of nitrogen and phosphorus from wastewater by means of FeS-based autotrophic denitrification.
    Li R; Niu J; Zhan X; Liu B
    Water Sci Technol; 2013; 67(12):2761-7. PubMed ID: 23787315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus removal from synthetic and municipal wastewater using spent alum sludge.
    Georgantas DA; Grigoropoulou HP
    Water Sci Technol; 2005; 52(10-11):525-32. PubMed ID: 16459830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.