These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18419013)

  • 41. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide.
    Genz A; Kornmüller A; Jekel M
    Water Res; 2004 Sep; 38(16):3523-30. PubMed ID: 15325178
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms.
    Boelee NC; Temmink H; Janssen M; Buisman CJ; Wijffels RH
    Water Res; 2011 Nov; 45(18):5925-33. PubMed ID: 21940029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Optimization of a modified UCT step feed process treating municipal wastewater].
    Ge SJ; Peng YZ; Cao X; Wang SY; Yang AM
    Huan Jing Ke Xue; 2011 Jul; 32(7):2006-12. PubMed ID: 21922822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Sorption-desorption of phosphate in wastewater by hydrous iron oxide].
    Xiang XM; Liu Y; Zhou JT; Wang R
    Huan Jing Ke Xue; 2008 Nov; 29(11):3059-63. PubMed ID: 19186802
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter.
    Arias CA; Brix H; Johansen NH
    Water Sci Technol; 2003; 48(5):51-8. PubMed ID: 14621147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of redox potential and pH changes on phosphorus retention by melter slag filters treating wastewater.
    Pratt C; Shilton A; Pratt S; Haverkamp RG; Elmetri I
    Environ Sci Technol; 2007 Sep; 41(18):6585-90. PubMed ID: 17948812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Co-conditioning of the anaerobic digested sludge of a municipal wastewater treatment plant with alum sludge: benefit of phosphorus reduction in reject water.
    Yang Y; Zhao YQ; Babatunde AO; Kearney P
    Water Environ Res; 2007 Dec; 79(13):2468-76. PubMed ID: 18198692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-term performance summary for the Boot Wetland Treatment System.
    Martin JR; Keller CH; Clarke RA; Knight RL
    Water Sci Technol; 2001; 44(11-12):413-20. PubMed ID: 11804128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Municipal wastewater treatment using a composite flocculant made of polyaluminum chloride and polydimethyldiallyammonium chloride].
    Lu L; Gao BY; Xu CH; Yue QY; Cao BC; Xu SP; Li WW
    Huan Jing Ke Xue; 2007 Sep; 28(9):2035-40. PubMed ID: 17990553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A performance evaluation of a new iron oxide-based porous ceramsite (IPC) in biological aerated filters.
    Bao T; Chen T; Ezzatahmadi N; Rathnayake SI; Chen D; Wille ML; Frost R
    Environ Technol; 2017 Apr; 38(7):827-834. PubMed ID: 27487524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of nitrogen and phosphorus in a combined A2/O-BAF system with a short aerobic SRT.
    Ding YW; Wang L; Wang BZ; Wang Z
    J Environ Sci (China); 2006; 18(6):1082-7. PubMed ID: 17294946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced nutrient removal in three types of step feeding process from municipal wastewater.
    Peng Y; Ge S
    Bioresour Technol; 2011 Jun; 102(11):6405-13. PubMed ID: 21474307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discussion of: Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal: results from trials with different small-scale pilot plants, R. Gnirss, J. Dittrich, 72, 602 (2000).
    Soller J; Olivieri A; Eisenberg D; Trussell R; Tchobanoglous G
    Water Environ Res; 2002; 74(2):210-1; author reply 212. PubMed ID: 12043978
    [No Abstract]   [Full Text] [Related]  

  • 54. Recovery oriented phosphorus adsorption process in decentralized advanced Johkasou.
    Ebie Y; Kondo T; Kadoya N; Mouri M; Maruyama O; Noritake S; Inamori Y; Xu K
    Water Sci Technol; 2008; 57(12):1977-81. PubMed ID: 18587187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relative performance of duckweed ponds and rock filtration as advanced in-pond wastewater treatment processes for upgrading waste stabilisation pond effluent: a pilot study.
    Short MD; Cromar NJ; Nixon JB; Fallowfield HJ
    Water Sci Technol; 2007; 55(11):111-9. PubMed ID: 17591203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater.
    Merzouki M; Bernet N; Delgenès JP; Benlemlih M
    Bioresour Technol; 2005 Aug; 96(12):1317-22. PubMed ID: 15792577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.
    Wang Z; Lin Y; Wu D; Kong H
    Chemosphere; 2016 Feb; 144():1290-8. PubMed ID: 26476050
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nutrients removal in MBRs for municipal wastewater treatment.
    Kraume M; Bracklow U; Vocks M; Drews A
    Water Sci Technol; 2005; 51(6-7):391-402. PubMed ID: 16004001
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.
    Chen X; Chen X; Wan X; Weng B; Huang Q
    Bioresour Technol; 2010 Dec; 101(23):9025-30. PubMed ID: 20674342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterisation of phosphorous forms in wastewater treatment plants.
    Fernández Dueñas J; Ribas Alonso J; Freixó Rey A; Sánchez Ferrer A
    J Hazard Mater; 2003 Feb; 97(1-3):193-205. PubMed ID: 12573838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.