BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

895 related articles for article (PubMed ID: 18419134)

  • 1. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins.
    Conway ME; Coles SJ; Islam MM; Hutson SM
    Biochemistry; 2008 May; 47(19):5465-79. PubMed ID: 18419134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-Nitrosoglutathione inactivation of the mitochondrial and cytosolic BCAT proteins: S-nitrosation and S-thiolation.
    Coles SJ; Easton P; Sharrod H; Hutson SM; Hancock J; Patel VB; Conway ME
    Biochemistry; 2009 Jan; 48(3):645-56. PubMed ID: 19119849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-thiolation mimicry: quantitative and kinetic analysis of redox status of protein cysteines by glutathione-affinity chromatography.
    Niture SK; Velu CS; Bailey NI; Srivenugopal KS
    Arch Biochem Biophys; 2005 Dec; 444(2):174-84. PubMed ID: 16297848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential redox potential between the human cytosolic and mitochondrial branched-chain aminotransferase.
    Coles SJ; Hancock JT; Conway ME
    Acta Biochim Biophys Sin (Shanghai); 2012 Feb; 44(2):172-6. PubMed ID: 22107788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiolation and nitrosation of cysteines in biological fluids and cells.
    Di Simplicio P; Franconi F; FrosalĂ­ S; Di Giuseppe D
    Amino Acids; 2003 Dec; 25(3-4):323-39. PubMed ID: 14661094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of S-Nitrosation and S-Glutathionylation of the Human Branched-Chain Aminotransferase Proteins.
    Forshaw TE; Conway ME
    Methods Mol Biol; 2019; 1990():71-84. PubMed ID: 31148063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of protein function by glutathionylation.
    Ghezzi P
    Free Radic Res; 2005 Jun; 39(6):573-80. PubMed ID: 16036334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox modifications of protein-thiols: emerging roles in cell signaling.
    Biswas S; Chida AS; Rahman I
    Biochem Pharmacol; 2006 Feb; 71(5):551-64. PubMed ID: 16337153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein S-thiolation and dethiolation during the respiratory burst in human monocytes. A reversible post-translational modification with potential for buffering the effects of oxidant stress.
    Seres T; Ravichandran V; Moriguchi T; Rokutan K; Thomas JA; Johnston RB
    J Immunol; 1996 Mar; 156(5):1973-80. PubMed ID: 8596052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress.
    Gallogly MM; Mieyal JJ
    Curr Opin Pharmacol; 2007 Aug; 7(4):381-91. PubMed ID: 17662654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-glutathionylation in protein redox regulation.
    Dalle-Donne I; Rossi R; Giustarini D; Colombo R; Milzani A
    Free Radic Biol Med; 2007 Sep; 43(6):883-98. PubMed ID: 17697933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox in redux: Emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation.
    Tew KD
    Biochem Pharmacol; 2007 May; 73(9):1257-69. PubMed ID: 17098212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin.
    Goto M; Miyahara I; Hirotsu K; Conway M; Yennawar N; Islam MM; Hutson SM
    J Biol Chem; 2005 Nov; 280(44):37246-56. PubMed ID: 16141215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein S-glutathionylation: a regulatory device from bacteria to humans.
    Dalle-Donne I; Rossi R; Colombo G; Giustarini D; Milzani A
    Trends Biochem Sci; 2009 Feb; 34(2):85-96. PubMed ID: 19135374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme.
    Conway ME; Poole LB; Hutson SM
    Biochemistry; 2004 Jun; 43(23):7356-64. PubMed ID: 15182179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin.
    Lind C; Gerdes R; Schuppe-Koistinen I; Cotgreave IA
    Biochem Biophys Res Commun; 1998 Jun; 247(2):481-6. PubMed ID: 9642155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein S-thiolation and regulation of microsomal glutathione transferase activity by the glutathione redox couple.
    Dafré AL; Sies H; Akerboom T
    Arch Biochem Biophys; 1996 Aug; 332(2):288-94. PubMed ID: 8806737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol redox state and lipid and protein oxidation in the mouse striatum after pentylenetetrazol-induced epileptic seizure.
    Patsoukis N; Zervoudakis G; Georgiou CD; Angelatou F; Matsokis NA; Panagopoulos NT
    Epilepsia; 2005 Aug; 46(8):1205-11. PubMed ID: 16060929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.