BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 18419669)

  • 1. Quantitative risk assessment from farm to fork and beyond: a global Bayesian approach concerning food-borne diseases.
    Albert I; Grenier E; Denis JB; Rousseau J
    Risk Anal; 2008 Apr; 28(2):557-71. PubMed ID: 18419669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of three modelling approaches for quantitative risk assessment using the case study of Salmonella spp. in poultry meat.
    Parsons DJ; Orton TG; D'Souza J; Moore A; Jones R; Dodd CE
    Int J Food Microbiol; 2005 Jan; 98(1):35-51. PubMed ID: 15617799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Monitoring and risk assessment of campylobacter infections].
    Bartelt E
    Dtsch Tierarztl Wochenschr; 2004 Aug; 111(8):326-31. PubMed ID: 15469062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative risk assessment of thermophilic Campylobacter spp. and cross-contamination during handling of raw broiler chickens evaluating strategies at the producer level to reduce human campylobacteriosis in Sweden.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2008 Jan; 121(1):41-52. PubMed ID: 18037525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of results of microbiological analyses for risk-based control of Listeria monocytogenes in marinated broiler legs.
    Aarnisalo K; Vihavainen E; Rantala L; Maijala R; Suihko ML; Hielm S; Tuominen P; Ranta J; Raaska L
    Int J Food Microbiol; 2008 Feb; 121(3):275-84. PubMed ID: 18155311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of risk assessments on Campylobacter in broiler meat.
    Nauta M; Hill A; Rosenquist H; Brynestad S; Fetsch A; van der Logt P; Fazil A; Christensen B; Katsma E; Borck B; Havelaar A
    Int J Food Microbiol; 2009 Feb; 129(2):107-23. PubMed ID: 19136176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-contamination during food preparation: a mechanistic model applied to chicken-borne Campylobacter.
    Mylius SD; Nauta MJ; Havelaar AH
    Risk Anal; 2007 Aug; 27(4):803-13. PubMed ID: 17958493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying human health risks from virginiamycin used in chickens.
    Cox LA; Popken DA
    Risk Anal; 2004 Feb; 24(1):271-88. PubMed ID: 15028017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative risk assessment of human campylobacteriosis related to the consumption of chicken meat in two Italian regions.
    Calistri P; Giovannini A
    Int J Food Microbiol; 2008 Dec; 128(2):274-87. PubMed ID: 18842315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A risk assessment model for Campylobacter in broiler meat.
    Nauta MJ; Jacobs-Reitsma WF; Havelaar AH
    Risk Anal; 2007 Aug; 27(4):845-61. PubMed ID: 17958496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the frequency and duration of microbial contamination events.
    Powell MR
    Int J Food Microbiol; 2006 Jul; 110(1):93-9. PubMed ID: 16690153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty distribution associated with estimating a proportion in microbial risk assessment.
    Miconnet N; Cornu M; Beaufort A; Rosso L; Denis JB
    Risk Anal; 2005 Feb; 25(1):39-48. PubMed ID: 15787755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian Monte Carlo uncertainty analysis of human health risks from animal antimicrobial use in a dynamic model of emerging resistance.
    Cox LA; Popken DA
    Risk Anal; 2004 Oct; 24(5):1153-64. PubMed ID: 15563285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source attribution of food-borne zoonoses in New Zealand: a modified Hald model.
    Mullner P; Jones G; Noble A; Spencer SE; Hathaway S; French NP
    Risk Anal; 2009 Jul; 29(7):970-84. PubMed ID: 19486473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the differences in public health impact of salmonella subtypes using a bayesian microbial subtyping approach for source attribution.
    Pires SM; Hald T
    Foodborne Pathog Dis; 2010 Feb; 7(2):143-51. PubMed ID: 19877767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Bayesian modelling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon.
    Delignette-Muller ML; Cornu M; Pouillot R; Denis JB
    Int J Food Microbiol; 2006 Feb; 106(2):195-208. PubMed ID: 16216374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring an augmented Bayesian network to confront a complex quantitative microbial risk assessment model with durability studies: application to Bacillus cereus on a courgette purée production chain.
    Rigaux C; Ancelet S; Carlin F; Nguyen-thé C; Albert I
    Risk Anal; 2013 May; 33(5):877-92. PubMed ID: 22967223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A poultry-processing model for quantitative microbiological risk assessment.
    Nauta M; van der Fels-Klerx I; Havelaar A
    Risk Anal; 2005 Feb; 25(1):85-98. PubMed ID: 15787759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quantitative risk assessment related to microbial food contamination].
    Sanaa M; Bemrah N; Meyer S; Cerf O; Mohammed H
    Rev Epidemiol Sante Publique; 2000 Aug; 48 Suppl 2():2S11-24. PubMed ID: 11183481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian temporal source attribution of foodborne zoonoses: Campylobacter in Finland and Norway.
    Ranta J; Matjushin D; Virtanen T; Kuusi M; Viljugrein H; Hofshagen M; Hakkinen M
    Risk Anal; 2011 Jul; 31(7):1156-71. PubMed ID: 21231942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.