These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 18419934)
21. Controlled environments alter nutrient content of soybeans. Jurgonski LJ; Smart DJ; Bugbee B; Nielsen SS Adv Space Res; 1997; 20(10):1979-88. PubMed ID: 11542579 [TBL] [Abstract][Full Text] [Related]
22. Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates. Foss AR; Mattson WJ; Trier TM Environ Entomol; 2013 Jun; 42(3):503-14. PubMed ID: 23726059 [TBL] [Abstract][Full Text] [Related]
23. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae). Yifei Z; Yang D; Guijun W; Bin L; Guangnan X; Fajun C Environ Entomol; 2018 Aug; 47(4):848-856. PubMed ID: 29701817 [TBL] [Abstract][Full Text] [Related]
24. Host plant-mediated effects of elevated CO Kumar L; Sushilkumar ; Choudhary JS; Kumar B Bull Entomol Res; 2021 Feb; 111(1):111-119. PubMed ID: 32686624 [TBL] [Abstract][Full Text] [Related]
25. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
26. Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO(2) and ozone concentrations for 3 years under fully open-air field conditions. Bernacchi CJ; Leakey AD; Heady LE; Morgan PB; Dohleman FG; McGrath JM; Gillespie KM; Wittig VE; Rogers A; Long SP; Ort DR Plant Cell Environ; 2006 Nov; 29(11):2077-90. PubMed ID: 17081242 [TBL] [Abstract][Full Text] [Related]
27. Responses of leaf beetle larvae to elevated [CO₂] and temperature depend on Eucalyptus species. Gherlenda AN; Haigh AM; Moore BD; Johnson SN; Riegler M Oecologia; 2015 Feb; 177(2):607-17. PubMed ID: 25526844 [TBL] [Abstract][Full Text] [Related]
28. Vertical stratification of feeding by Japanese beetles within linden tree canopies: selective foraging or height per se? Rowe WJ; Potter DA Oecologia; 1996 Nov; 108(3):459-466. PubMed ID: 28307862 [TBL] [Abstract][Full Text] [Related]
29. Quantitative resistance traits and suitability of woody plant species for a polyphagous scarab, Popillia japonica Newman. Keathley CP; Potter DA Environ Entomol; 2008 Dec; 37(6):1548-57. PubMed ID: 19161699 [TBL] [Abstract][Full Text] [Related]
31. Elevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems. Prior SA; Runion GB; Rogers HH; Arriaga FJ J Environ Qual; 2010; 39(2):596-608. PubMed ID: 20176833 [TBL] [Abstract][Full Text] [Related]
32. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564 [TBL] [Abstract][Full Text] [Related]
33. Evidence that carbon dioxide enrichment alleviates ureide-induced decline of nodule nitrogenase activity. Serraj R; Sinclair TR Ann Bot; 2003 Jan; 91(1):85-9. PubMed ID: 12495923 [TBL] [Abstract][Full Text] [Related]
34. [Photosynthetic acclimation to elevated CO2 in strawberry leaves grown at different levels of nitrogen nutrition]. Xu K; Guo YP; Zhang SL; Dai WS; Fu QG Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Aug; 32(4):473-80. PubMed ID: 16957400 [TBL] [Abstract][Full Text] [Related]
35. Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Cloutier C; Jean C; Fournier M; Yelle S; Michaud D Arch Insect Biochem Physiol; 2000 Jun; 44(2):69-81. PubMed ID: 10861867 [TBL] [Abstract][Full Text] [Related]
36. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Williams RS; Lincoln DE; Norby RJ Oecologia; 2003 Sep; 137(1):114-22. PubMed ID: 12844253 [TBL] [Abstract][Full Text] [Related]
37. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient. Oikawa S; Ainsworth EA Environ Pollut; 2016 Aug; 215():347-355. PubMed ID: 27261884 [TBL] [Abstract][Full Text] [Related]
38. Ozone alters the feeding behavior of the leaf beetle Agelastica coerulea (Coleoptera: Chrysomelidae) into leaves of Japanese white birch (Betula platyphylla var. japonica). Agathokleous E; Sakikawa T; Abu ElEla SA; Mochizuki T; Nakamura M; Watanabe M; Kawamura K; Koike T Environ Sci Pollut Res Int; 2017 Jul; 24(21):17577-17583. PubMed ID: 28597386 [TBL] [Abstract][Full Text] [Related]
39. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources. Eller AS; McGuire KL; Sparks JP Tree Physiol; 2011 Apr; 31(4):391-401. PubMed ID: 21470979 [TBL] [Abstract][Full Text] [Related]
40. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. Knepp RG; Hamilton JG; Mohan JE; Zangerl AR; Berenbaum MR; Delucia EH New Phytol; 2005 Jul; 167(1):207-18. PubMed ID: 15948843 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]