These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18419940)

  • 1. Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach.
    Ayres CE; Jha BS; Meredith H; Bowman JR; Bowlin GL; Henderson SC; Simpson DG
    J Biomater Sci Polym Ed; 2008; 19(5):603-21. PubMed ID: 18419940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform.
    Ayres C; Bowlin GL; Henderson SC; Taylor L; Shultz J; Alexander J; Telemeco TA; Simpson DG
    Biomaterials; 2006 Nov; 27(32):5524-34. PubMed ID: 16859744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen.
    Sell S; Barnes C; Simpson D; Bowlin G
    J Biomed Mater Res A; 2008 Apr; 85(1):115-26. PubMed ID: 17688269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of electrospun fibrinogen structures.
    McManus MC; Boland ED; Koo HP; Barnes CP; Pawlowski KJ; Wnek GE; Simpson DG; Bowlin GL
    Acta Biomater; 2006 Jan; 2(1):19-28. PubMed ID: 16701855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of 2D fiber network orientation measurement methods.
    Sander EA; Barocas VH
    J Biomed Mater Res A; 2009 Feb; 88(2):322-31. PubMed ID: 18286605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold.
    Banglmaier RF; Sander EA; VandeVord PJ
    Acta Biomater; 2015 Apr; 17():26-35. PubMed ID: 25653215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a 3D cell culture system for investigating cell interactions with electrospun fibers.
    Sun T; Norton D; McKean RJ; Haycock JW; Ryan AJ; MacNeil S
    Biotechnol Bioeng; 2007 Aug; 97(5):1318-28. PubMed ID: 17171721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy.
    Fee T; Downs C; Eberhardt A; Zhou Y; Berry J
    J Biomed Mater Res A; 2016 Jul; 104(7):1680-6. PubMed ID: 26939754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds.
    Ayres CE; Bowlin GL; Pizinger R; Taylor LT; Keen CA; Simpson DG
    Acta Biomater; 2007 Sep; 3(5):651-61. PubMed ID: 17513181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of material properties in electrospun scaffolds: Role of cross-linking and fiber tertiary structure.
    Newton D; Mahajan R; Ayres C; Bowman JR; Bowlin GL; Simpson DG
    Acta Biomater; 2009 Jan; 5(1):518-29. PubMed ID: 18676212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response.
    Ying TH; Ishii D; Mahara A; Murakami S; Yamaoka T; Sudesh K; Samian R; Fujita M; Maeda M; Iwata T
    Biomaterials; 2008 Apr; 29(10):1307-17. PubMed ID: 18155139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of molecular orientation on mechanical property of single electrospun fiber of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate].
    Chan KH; Wong SY; Li X; Zhang YZ; Lim PC; Lim CT; Kotaki M; He CB
    J Phys Chem B; 2009 Oct; 113(40):13179-85. PubMed ID: 19761245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofiber scaffolds: engineering soft tissues.
    Kumbar SG; James R; Nukavarapu SP; Laurencin CT
    Biomed Mater; 2008 Sep; 3(3):034002. PubMed ID: 18689924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic nerve scaffolds with aligned intraluminal microchannels: a "sweet" approach to tissue engineering.
    Li J; Rickett TA; Shi R
    Langmuir; 2009 Feb; 25(3):1813-7. PubMed ID: 19105786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S
    Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun PCL in vitro: a microstructural basis for mechanical property changes.
    Johnson J; Niehaus A; Nichols S; Lee D; Koepsel J; Anderson D; Lannutti J
    J Biomater Sci Polym Ed; 2009; 20(4):467-81. PubMed ID: 19228448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs.
    Ekaputra AK; Prestwich GD; Cool SM; Hutmacher DW
    Biomacromolecules; 2008 Aug; 9(8):2097-103. PubMed ID: 18646822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.