BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18420146)

  • 1. Optimizing glycosyltransferase specificity via "hot spot" saturation mutagenesis presents a catalyst for novobiocin glycorandomization.
    Williams GJ; Goff RD; Zhang C; Thorson JS
    Chem Biol; 2008 Apr; 15(4):393-401. PubMed ID: 18420146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sweetly expanding enzymatic glycodiversification.
    Jakeman DL
    Chem Biol; 2008 Apr; 15(4):307-8. PubMed ID: 18420135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution.
    Williams GJ; Thorson JS
    Nat Protoc; 2008; 3(3):357-62. PubMed ID: 18323806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus.
    Quirós LM; Aguirrezabalaga I; Olano C; Méndez C; Salas JA
    Mol Microbiol; 1998 Jun; 28(6):1177-85. PubMed ID: 9680207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput pH indicator assay for screening glycosyltransferase saturation mutagenesis libraries.
    Persson M; Palcic MM
    Anal Biochem; 2008 Jul; 378(1):1-7. PubMed ID: 18405657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single amino acid mutations of Medicago glycosyltransferase UGT85H2 enhance activity and impart reversibility.
    Modolo LV; Escamilla-Treviño LL; Dixon RA; Wang X
    FEBS Lett; 2009 Jun; 583(12):2131-5. PubMed ID: 19500551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and high-throughput screening.
    Park SH; Park HY; Sohng JK; Lee HC; Liou K; Yoon YJ; Kim BG
    Biotechnol Bioeng; 2009 Mar; 102(4):988-94. PubMed ID: 18985617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the role of highly conserved residues forming the acceptor binding pocket of the promiscuous glycosyltransferase MGT in defining the specificity towards a panel of flavonoids.
    Xie C; Han W; Wang PG; Cheng J
    Biochemistry (Mosc); 2013 May; 78(5):536-41. PubMed ID: 23848156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus.
    Chiu HH; Hsieh YC; Chen YH; Wang HY; Lu CY; Chen CJ; Li YK
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8411-24. PubMed ID: 27198725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering UDP-glucose Donor Substrate Specificity of
    Cho KW; Kim TS; Le TT; Nguyen HT; Oh YS; Pandey RP; Sohng JK
    J Microbiol Biotechnol; 2019 Feb; 29(2):268-273. PubMed ID: 30602272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity.
    Tegl G; Nidetzky B
    Biochem Soc Trans; 2020 Aug; 48(4):1583-1598. PubMed ID: 32657344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing suggested catalytic domains of glycosyltransferases by site-directed mutagenesis.
    Hefner T; Stöckigt J
    Eur J Biochem; 2003 Feb; 270(3):533-8. PubMed ID: 12542702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of deoxysugar transfer by the elloramycin glycosyltransferase ElmGT through site-directed mutagenesis.
    Ramos A; Olano C; Braña AF; Méndez C; Salas JA
    J Bacteriol; 2009 Apr; 191(8):2871-5. PubMed ID: 19233921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screening methodology for the directed evolution of glycosyltransferases.
    Aharoni A; Thieme K; Chiu CP; Buchini S; Lairson LL; Chen H; Strynadka NC; Wakarchuk WW; Withers SG
    Nat Methods; 2006 Aug; 3(8):609-14. PubMed ID: 16862135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis.
    He JB; Zhao P; Hu ZM; Liu S; Kuang Y; Zhang M; Li B; Yun CH; Qiao X; Ye M
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11513-11520. PubMed ID: 31163097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of a thioglycoligase: randomized mutagenesis of the acid-base residue leads to the identification of improved catalysts.
    Müllegger J; Jahn M; Chen HM; Warren RA; Withers SG
    Protein Eng Des Sel; 2005 Jan; 18(1):33-40. PubMed ID: 15790578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic
    Jia KZ; Zhu LW; Qu X; Li S; Shen Y; Qi Q; Zhang Y; Li YZ; Tang YJ
    ACS Synth Biol; 2019 Dec; 8(12):2718-2725. PubMed ID: 31774653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays.
    Seibel J; Hellmuth H; Hofer B; Kicinska AM; Schmalbruch B
    Chembiochem; 2006 Feb; 7(2):310-20. PubMed ID: 16416490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Advances and Challenges in Enzymatic
    Gao HY; Liu Y; Tan FF; Zhu LW; Jia KZ; Tang YJ
    Curr Pharm Des; 2022; 28(18):1466-1479. PubMed ID: 35466866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.