BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18420598)

  • 21. Poly-drug cancer therapy based on ceramide.
    Radin NS
    Eksp Onkol; 2004 Mar; 26(1):3-10. PubMed ID: 15112572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2-Hydroxy-ceramide synthesis by ceramide synthase family: enzymatic basis for the preference of FA chain length.
    Mizutani Y; Kihara A; Chiba H; Tojo H; Igarashi Y
    J Lipid Res; 2008 Nov; 49(11):2356-64. PubMed ID: 18541923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Long-Chain Sphingoid Base of Ceramides Determines Their Propensity for Lateral Segregation.
    Al Sazzad MA; Yasuda T; Murata M; Slotte JP
    Biophys J; 2017 Mar; 112(5):976-983. PubMed ID: 28297656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atypical surface behavior of ceramides with nonhydroxy and 2-hydroxy very long-chain (C28-C32) PUFAs.
    Peñalva DA; Oresti GM; Dupuy F; Antollini SS; Maggio B; Aveldaño MI; Fanani ML
    Biochim Biophys Acta; 2014 Mar; 1838(3):731-8. PubMed ID: 24315999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry.
    Buré C; Cacas JL; Mongrand S; Schmitter JM
    Anal Bioanal Chem; 2014 Feb; 406(4):995-1010. PubMed ID: 23887274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sphingolipid Long-Chain Base Phosphate Degradation Can Be a Rate-Limiting Step in Long-Chain Base Homeostasis.
    Lambour B; Glenz R; Forner C; Krischke M; Mueller MJ; Fekete A; Waller F
    Front Plant Sci; 2022; 13():911073. PubMed ID: 35783987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biased distribution of the branched-chain fatty acids in ceramides of vernix caseosa.
    Oku H; Mimura K; Tokitsu Y; Onaga K; Iwasaki H; Chinen I
    Lipids; 2000 Apr; 35(4):373-81. PubMed ID: 10858021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface behavior of sphingomyelins with very long chain polyunsaturated fatty acids and effects of their conversion to ceramides.
    Peñalva DA; Wilke N; Maggio B; Aveldaño MI; Fanani ML
    Langmuir; 2014 Apr; 30(15):4385-95. PubMed ID: 24678907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of phytosphingosine-type ceramides on the structure of DMPC membrane.
    Zbytovská J; Kiselev MA; Funari SS; Garamus VM; Wartewig S; Neubert R
    Chem Phys Lipids; 2005 Dec; 138(1-2):69-80. PubMed ID: 16202987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of 7-oxasphingosine and -ceramide analogues and their evaluation in a model for apoptosis.
    Rajan R; Wallimann K; Vasella A; Pace D; Genazzani AA; Canonico PL; Condorelli F
    Chem Biodivers; 2004 Nov; 1(11):1785-99. PubMed ID: 17191816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-recognition of N-linked glycans with multivalent GlcNAc, determined as ceramide mimetic conjugate.
    Yoon SJ; Ikeda S; Sadilek M; Hakomori SI; Ishida H; Kiso M
    Glycobiology; 2007 Sep; 17(9):1007-14. PubMed ID: 17609198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted analysis of ceramides and cerebrosides in yellow lupin seeds by reversed-phase liquid chromatography coupled to electrospray ionization and multistage mass spectrometry.
    Bianco M; Calvano CD; Losito I; Palmisano F; Cataldi TRI
    Food Chem; 2020 Sep; 324():126878. PubMed ID: 32344348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: Biophysical and physiological implications.
    Manni MM; Sot J; Arretxe E; Gil-Redondo R; Falcón-Pérez JM; Balgoma D; Alonso C; Goñi FM; Alonso A
    Chem Phys Lipids; 2018 Dec; 217():29-34. PubMed ID: 30359584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibody labeling of cholesterol/ceramide ordered domains in cell membranes.
    Scheffer L; Futerman AH; Addadi L
    Chembiochem; 2007 Dec; 8(18):2286-94. PubMed ID: 17957818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification of α-hydroxy ceramides in mice serum by LC-MS/MS: Application to sepsis study.
    Chao Y; Chen X; Shi X; Li N; Gao S; Yang J; Dong X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Jun; 1225():123764. PubMed ID: 37267800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput screening assay for the quantification of Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, and d18:1/22:0 in HepG2 cells using RapidFire mass spectrometry.
    Dittakavi S; Mahadevan L; Chandrashekar DV; Bhamidipati RK; Suresh J; Dhakshinamoorthy S; Li Z; Baerenz F; Tennagels N; Mullangi R
    Biomed Chromatogr; 2020 May; 34(5):e4790. PubMed ID: 31883352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural characterization of plant glucosylceramides and the corresponding ceramides by UHPLC-LTQ-Orbitrap mass spectrometry.
    Adem AA; Belete A; Soboleva A; Frolov A; Tessema EN; Gebre-Mariam T; Neubert RHH
    J Pharm Biomed Anal; 2021 Jan; 192():113677. PubMed ID: 33099117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Omega-O-acylceramide, a lipid essential for mammalian survival.
    Uchida Y; Holleran WM
    J Dermatol Sci; 2008 Aug; 51(2):77-87. PubMed ID: 18329855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic Conversion of Ceramides in HeLa Cells - A Cholesteryl Phosphocholine Delivery Approach.
    Kjellberg MA; Lönnfors M; Slotte JP; Mattjus P
    PLoS One; 2015; 10(11):e0143385. PubMed ID: 26599810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure elucidation of neutral, di-, tri-, and tetraglycosylceramides from High Five cells: identification of a novel (non-arthro-series) glycosphingolipid pathway.
    Fuller MD; Schwientek T; Wandall HH; Pedersen JW; Clausen H; Levery SB
    Glycobiology; 2005 Dec; 15(12):1286-301. PubMed ID: 16014747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.