These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 18420643)

  • 1. Genetic parameters for tunisian holsteins using a test-day random regression model.
    Hammami H; Rekik B; Soyeurt H; Ben Gara A; Gengler N
    J Dairy Sci; 2008 May; 91(5):2118-26. PubMed ID: 18420643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variance components for test-day milk, fat, and protein yield, and somatic cell score for analyzing management information.
    Caccamo M; Veerkamp RF; de Jong G; Pool MH; Petriglieri R; Licitra G
    J Dairy Sci; 2008 Aug; 91(8):3268-76. PubMed ID: 18650304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of milk production traits of polish black and white cattle using large-scale random regression test-day models.
    Strabel T; Jamrozik J
    J Dairy Sci; 2006 Aug; 89(8):3152-63. PubMed ID: 16840632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of test-day records beyond three hundred five days for estimation of three hundred five-day breeding values for production traits and somatic cell score of Canadian Holsteins.
    Bohmanova J; Miglior F; Jamrozik J
    J Dairy Sci; 2009 Oct; 92(10):5314-25. PubMed ID: 19762849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental sensitivity for milk yield in Luxembourg and Tunisian Holsteins by herd management level.
    Hammami H; Rekik B; Bastin C; Soyeurt H; Bormann J; Stoll J; Gengler N
    J Dairy Sci; 2009 Sep; 92(9):4604-12. PubMed ID: 19700723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic parameters of milking frequency and milk production traits in Canadian Holsteins milked by an automated milking system.
    Nixon M; Bohmanova J; Jamrozik J; Schaeffer LR; Hand K; Miglior F
    J Dairy Sci; 2009 Jul; 92(7):3422-30. PubMed ID: 19528620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random herd curves in a test-day model for milk, fat, and protein production of dairy cattle in The Netherlands.
    de Roos AP; Harbers AG; de Jong G
    J Dairy Sci; 2004 Aug; 87(8):2693-701. PubMed ID: 15328295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic parameters for first and second lactation milk yields of Polish black and white cattle with random regression test-day models.
    Strabel T; Misztal I
    J Dairy Sci; 1999 Dec; 82(12):2805-10. PubMed ID: 10629829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between milk yield and somatic cell score in Canadian Holsteins from simultaneous and recursive random regression models.
    Jamrozik J; Bohmanova J; Schaeffer LR
    J Dairy Sci; 2010 Mar; 93(3):1216-33. PubMed ID: 20172242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotype x environment interaction for milk yield in Holsteins using Luxembourg and Tunisian populations.
    Hammami H; Rekik B; Soyeurt H; Bastin C; Stoll J; Gengler N
    J Dairy Sci; 2008 Sep; 91(9):3661-71. PubMed ID: 18765624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic parameters for a multiple-trait multiple-lactation random regression test-day model in Italian Holsteins.
    Muir BL; Kistemaker G; Jamrozik J; Canavesi F
    J Dairy Sci; 2007 Mar; 90(3):1564-74. PubMed ID: 17297130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic parameters for test-day yield of milk, fat and protein in buffaloes estimated by random regression models.
    Aspilcueta-Borquis RR; Araujo Neto FR; Baldi F; Santos DJ; Albuquerque LG; Tonhati H
    J Dairy Res; 2012 Aug; 79(3):272-9. PubMed ID: 22444071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic components of heat stress for dairy cattle with multiple lactations.
    Aguilar I; Misztal I; Tsuruta S
    J Dairy Sci; 2009 Nov; 92(11):5702-11. PubMed ID: 19841230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short communication: Genetic parameters of production traits in Chinese Holsteins using a random regression test-day model.
    Miglior F; Gong W; Wang Y; Kistemaker GJ; Sewalem A; Jamrozik J
    J Dairy Sci; 2009 Sep; 92(9):4697-706. PubMed ID: 19700734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within-herd heritability estimated with daughter-parent regression for yield and somatic cell score.
    Dechow CD; Norman HD
    J Dairy Sci; 2007 Jan; 90(1):482-92. PubMed ID: 17183117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows.
    Bohmanova J; Miglior F; Jamrozik J; Misztal I; Sullivan PG
    J Dairy Sci; 2008 Sep; 91(9):3627-38. PubMed ID: 18765621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.
    Bignardi AB; El Faro L; Cardoso VL; Machado PF; Albuquerque LG
    J Dairy Sci; 2009 Sep; 92(9):4634-40. PubMed ID: 19700726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimated heterogeneity of phenotypic variance of test-day yield with a structural variance model.
    Gengler N; Wiggans GR; Gillon A
    J Dairy Sci; 2004 Jun; 87(6):1908-16. PubMed ID: 15453508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes.
    Borquis RR; Neto FR; Baldi F; Hurtado-Lugo N; de Camargo GM; Muñoz-Berrocal M; Tonhati H
    J Dairy Sci; 2013 Sep; 96(9):5923-32. PubMed ID: 23831097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint international evaluation of Milking Shorthorn dairy cattle for production traits.
    Barrett R; Miglior F; Jansen G; Jamrozik J; Schaeffer LR
    J Dairy Sci; 2005 Sep; 88(9):3326-36. PubMed ID: 16107423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.