These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18420657)

  • 21. Characterization of multigene families in the micronuclear genome of Paramecium tetraurelia reveals a germline specific sequence in an intron of a centrin gene.
    Vayssié L; Sperling L; Madeddu L
    Nucleic Acids Res; 1997 Mar; 25(5):1036-41. PubMed ID: 9023115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Timing of developmentally programmed excision and circularization of Paramecium internal eliminated sequences.
    Bétermier M; Duharcourt S; Seitz H; Meyer E
    Mol Cell Biol; 2000 Mar; 20(5):1553-61. PubMed ID: 10669733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis of genetic and epigenetic control of programmed DNA deletion.
    Swart EC; Wilkes CD; Sandoval PY; Arambasic M; Sperling L; Nowacki M
    Nucleic Acids Res; 2014 Aug; 42(14):8970-83. PubMed ID: 25016527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmentally regulated excision of a 28-base-pair sequence from the Paramecium genome requires flanking DNA.
    Ku M; Mayer K; Forney JD
    Mol Cell Biol; 2000 Nov; 20(22):8390-6. PubMed ID: 11046136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination.
    Abello A; Régnier V; Arnaiz O; Le Bars R; Bétermier M; Bischerour J
    PLoS Genet; 2020 Apr; 16(4):e1008723. PubMed ID: 32298257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of DNA excision efficiency in Paramecium.
    Dubrana K; Amar L
    Nucleic Acids Res; 2001 Nov; 29(22):4654-62. PubMed ID: 11713315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes.
    Sellis D; Guérin F; Arnaiz O; Pett W; Lerat E; Boggetto N; Krenek S; Berendonk T; Couloux A; Aury JM; Labadie K; Malinsky S; Bhullar S; Meyer E; Sperling L; Duret L; Duharcourt S
    PLoS Biol; 2021 Jul; 19(7):e3001309. PubMed ID: 34324490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One Cell, Two Gears: Extensive Somatic Genome Plasticity Accompanies High Germline Genome Stability in Paramecium.
    Catania F; Rothering R; Vitali V
    Genome Biol Evol; 2021 Dec; 13(12):. PubMed ID: 34849843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early developmental, meiosis-specific proteins - Spo11, Msh4-1, and Msh5 - Affect subsequent genome reorganization in Paramecium tetraurelia.
    Rzeszutek I; Swart EC; Pabian-Jewuła S; Russo A; Nowacki M
    Biochim Biophys Acta Mol Cell Res; 2022 Jun; 1869(6):119239. PubMed ID: 35181406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molecular basis for the alternative stable phenotype in a behavioral mutant of Paramecium tetraurelia.
    Matsuda A; Takahashi M
    Genes Genet Syst; 2001 Oct; 76(5):289-94. PubMed ID: 11817644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-Mendelian inheritance and homology-dependent effects in ciliates.
    Meyer E; Garnier O
    Adv Genet; 2002; 46():305-37. PubMed ID: 11931229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Mendelian mutation affecting mating-type determination also affects developmental genomic rearrangements in Paramecium tetraurelia.
    Meyer E; Keller AM
    Genetics; 1996 May; 143(1):191-202. PubMed ID: 8722774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia.
    Baudry C; Malinsky S; Restituito M; Kapusta A; Rosa S; Meyer E; Bétermier M
    Genes Dev; 2009 Nov; 23(21):2478-83. PubMed ID: 19884254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements.
    Dubois E; Mathy N; Régnier V; Bischerour J; Baudry C; Trouslard R; Bétermier M
    Nucleic Acids Res; 2017 Apr; 45(6):3204-3216. PubMed ID: 28104713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncoupling programmed DNA cleavage and repair scrambles the Paramecium somatic genome.
    Bischerour J; Arnaiz O; Zangarelli C; Régnier V; Iehl F; Ropars V; Charbonnier JB; Bétermier M
    Cell Rep; 2024 Apr; 43(4):114001. PubMed ID: 38547127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spliced DNA sequences in the Paramecium germline: their properties and evolutionary potential.
    Catania F; McGrath CL; Doak TG; Lynch M
    Genome Biol Evol; 2013; 5(6):1200-11. PubMed ID: 23737328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting.
    Sandoval PY; Swart EC; Arambasic M; Nowacki M
    Dev Cell; 2014 Jan; 28(2):174-88. PubMed ID: 24439910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferential cleavage of Paramecium DNA mediated by the C. elegans Tc1 transposase in vitro.
    Nakayama S; Endoh H
    Genes Genet Syst; 2003 Dec; 78(6):391-8. PubMed ID: 14973340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin remodeling is required for sRNA-guided DNA elimination in Paramecium.
    Singh A; Maurer-Alcalá XX; Solberg T; Häußermann L; Gisler S; Ignarski M; Swart EC; Nowacki M
    EMBO J; 2022 Nov; 41(22):e111839. PubMed ID: 36221862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subtraction by addition: domesticated transposases in programmed DNA elimination.
    Motl JA; Chalker DL
    Genes Dev; 2009 Nov; 23(21):2455-60. PubMed ID: 19884252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.