BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 18420707)

  • 1. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion.
    O'Connor RS; Steeds CM; Wiseman RW; Pavlath GK
    J Physiol; 2008 Jun; 586(12):2841-53. PubMed ID: 18420707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine kinase B is necessary to limit myoblast fusion during myogenesis.
    Simionescu-Bankston A; Pichavant C; Canner JP; Apponi LH; Wang Y; Steeds C; Olthoff JT; Belanto JJ; Ervasti JM; Pavlath GK
    Am J Physiol Cell Physiol; 2015 Jun; 308(11):C919-31. PubMed ID: 25810257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phosphocreatine-creatine kinase system helps to shape muscle cells and keep them healthy and alive.
    Saks V
    J Physiol; 2008 Jun; 586(12):2817-8. PubMed ID: 18556720
    [No Abstract]   [Full Text] [Related]  

  • 4. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion.
    Nowak SJ; Nahirney PC; Hadjantonakis AK; Baylies MK
    J Cell Sci; 2009 Sep; 122(Pt 18):3282-93. PubMed ID: 19706686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of myoblast fusion on a cortical actin wall and nonmuscle myosin IIA.
    Duan R; Gallagher PJ
    Dev Biol; 2009 Jan; 325(2):374-85. PubMed ID: 19027000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles.
    Dhanyasi N; Segal D; Shimoni E; Shinder V; Shilo BZ; VijayRaghavan K; Schejter ED
    J Cell Biol; 2015 Oct; 211(1):191-203. PubMed ID: 26459604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The creatine kinase system and pleiotropic effects of creatine.
    Wallimann T; Tokarska-Schlattner M; Schlattner U
    Amino Acids; 2011 May; 40(5):1271-96. PubMed ID: 21448658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion.
    Kim S; Shilagardi K; Zhang S; Hong SN; Sens KL; Bo J; Gonzalez GA; Chen EH
    Dev Cell; 2007 Apr; 12(4):571-86. PubMed ID: 17419995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myoblast fusion: lessons from flies and mice.
    Abmayr SM; Pavlath GK
    Development; 2012 Feb; 139(4):641-56. PubMed ID: 22274696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling mechanisms in mammalian myoblast fusion.
    Hindi SM; Tajrishi MM; Kumar A
    Sci Signal; 2013 Apr; 6(272):re2. PubMed ID: 23612709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila.
    Haralalka S; Shelton C; Cartwright HN; Katzfey E; Janzen E; Abmayr SM
    Development; 2011 Apr; 138(8):1551-62. PubMed ID: 21389053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a multi-nucleated myotube, the role of the actin cytoskeleton.
    Peckham M
    J Microsc; 2008 Sep; 231(3):486-93. PubMed ID: 18755004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FuRMAS: triggering myoblast fusion in Drosophila.
    Onel SF; Renkawitz-Pohl R
    Dev Dyn; 2009 Jun; 238(6):1513-25. PubMed ID: 19418445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of arachidonic acid and its major prostaglandin derivatives on bovine myoblast proliferation, differentiation, and fusion.
    Leng X; Jiang H
    Domest Anim Endocrinol; 2019 Apr; 67():28-36. PubMed ID: 30677541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila.
    Massarwa R; Carmon S; Shilo BZ; Schejter ED
    Dev Cell; 2007 Apr; 12(4):557-69. PubMed ID: 17419994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion.
    Abramovici H; Gee SH
    Cell Motil Cytoskeleton; 2007 Jul; 64(7):549-67. PubMed ID: 17410543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role and organization of the actin cytoskeleton during cell-cell fusion.
    Martin SG
    Semin Cell Dev Biol; 2016 Dec; 60():121-126. PubMed ID: 27476112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion.
    Chuang MC; Lin SS; Ohniwa RL; Lee GH; Su YA; Chang YC; Tang MJ; Liu YW
    J Cell Biol; 2019 May; 218(5):1670-1685. PubMed ID: 30894403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly.
    Berendse M; Grounds MD; Lloyd CM
    Exp Cell Res; 2003 Dec; 291(2):435-50. PubMed ID: 14644165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.