These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18421150)

  • 21. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
    Maglica Z; Striebel F; Weber-Ban E
    J Mol Biol; 2008 Dec; 384(2):503-11. PubMed ID: 18835567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered specificity of a AAA+ protease.
    Farrell CM; Baker TA; Sauer RT
    Mol Cell; 2007 Jan; 25(1):161-6. PubMed ID: 17218279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.
    Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation.
    Flynn JM; Levchenko I; Sauer RT; Baker TA
    Genes Dev; 2004 Sep; 18(18):2292-301. PubMed ID: 15371343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system.
    Gottesman S; Roche E; Zhou Y; Sauer RT
    Genes Dev; 1998 May; 12(9):1338-47. PubMed ID: 9573050
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer.
    Piszczek G; Rozycki J; Singh SK; Ginsburg A; Maurizi MR
    J Biol Chem; 2005 Apr; 280(13):12221-30. PubMed ID: 15657062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of the dimeric zinc binding domain of the chaperone ClpX.
    Donaldson LW; Wojtyra U; Houry WA
    J Biol Chem; 2003 Dec; 278(49):48991-6. PubMed ID: 14525985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and substrate specificity of an SspB ortholog: design implications for AAA+ adaptors.
    Chien P; Grant RA; Sauer RT; Baker TA
    Structure; 2007 Oct; 15(10):1296-305. PubMed ID: 17937918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit.
    Too PH; Erales J; Simen JD; Marjanovic A; Coffino P
    J Biol Chem; 2013 May; 288(19):13243-57. PubMed ID: 23530043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine.
    Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA
    Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight into the RssB-Mediated Recognition and Delivery of σ
    Micevski D; Zeth K; Mulhern TD; Schuenemann VJ; Zammit JE; Truscott KN; Dougan DA
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32316259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O.
    Thibault G; Houry WA
    J Phys Chem B; 2012 Jun; 116(23):6717-24. PubMed ID: 22360725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering an SspB-mediated degron for novel controllable protein degradation.
    Lei Y; Chen W; Xiang L; Wu J; Zhen Z; Jin JM; Liang C; Tang SY
    Metab Eng; 2022 Nov; 74():150-159. PubMed ID: 36328294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of MinD oscillator complexes by Escherichia coli ClpXP.
    LaBreck CJ; Trebino CE; Ferreira CN; Morrison JJ; DiBiasio EC; Conti J; Camberg JL
    J Biol Chem; 2021; 296():100162. PubMed ID: 33288679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor.
    Defenbaugh DA; Nakai H
    J Biol Chem; 2003 Dec; 278(52):52333-9. PubMed ID: 14559921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease.
    Shin Y; Davis JH; Brau RR; Martin A; Kenniston JA; Baker TA; Sauer RT; Lang MJ
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19340-5. PubMed ID: 19892734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.
    Cranz-Mileva S; Imkamp F; Kolygo K; Maglica Z; Kress W; Weber-Ban E
    J Mol Biol; 2008 Apr; 378(2):412-24. PubMed ID: 18358489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trans-targeting of protease substrates by conformationally activating a regulable ClpX-recognition motif.
    Marshall-Batty KR; Nakai H
    Mol Microbiol; 2008 Feb; 67(4):920-33. PubMed ID: 18179597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.