These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 18421373)

  • 21. Self-organized criticality and scale-free properties in emergent functional neural networks.
    Shin CW; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):045101. PubMed ID: 17155118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity.
    Ren Q; Kolwankar KM; Samal A; Jost J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056103. PubMed ID: 23214839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural encoding of rapidly fluctuating odors.
    Geffen MN; Broome BM; Laurent G; Meister M
    Neuron; 2009 Feb; 61(4):570-86. PubMed ID: 19249277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intensity versus identity coding in an olfactory system.
    Stopfer M; Jayaraman V; Laurent G
    Neuron; 2003 Sep; 39(6):991-1004. PubMed ID: 12971898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning cross-modal spatial transformations through spike timing-dependent plasticity.
    Davison AP; Frégnac Y
    J Neurosci; 2006 May; 26(21):5604-15. PubMed ID: 16723517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From synchrony to sparseness.
    Theunissen FE
    Trends Neurosci; 2003 Feb; 26(2):61-4. PubMed ID: 12536128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex.
    Oswald AM; Urban NN
    J Neurosci; 2012 May; 32(18):6092-104. PubMed ID: 22553016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oscillations and spiking pairs: behavior of a neuronal model with STDP learning.
    Shen X; Lin X; De Wilde P
    Neural Comput; 2008 Aug; 20(8):2037-69. PubMed ID: 18336082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency transitions in odor-evoked neural oscillations.
    Ito I; Bazhenov M; Ong RC; Raman B; Stopfer M
    Neuron; 2009 Dec; 64(5):692-706. PubMed ID: 20005825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity-dependent synaptic plasticity of NMDA receptors.
    Rebola N; Srikumar BN; Mulle C
    J Physiol; 2010 Jan; 588(Pt 1):93-9. PubMed ID: 19822542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oscillations and sparsening of odor representations in the mushroom body.
    Perez-Orive J; Mazor O; Turner GC; Cassenaer S; Wilson RI; Laurent G
    Science; 2002 Jul; 297(5580):359-65. PubMed ID: 12130775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasticity, learning, and complexity in spiking networks.
    Kello CT; Rodny J; Warlaumont AS; Noelle DC
    Crit Rev Biomed Eng; 2012; 40(6):501-18. PubMed ID: 23356694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous olfactory receptor neuron activity determines follower cell response properties.
    Joseph J; Dunn FA; Stopfer M
    J Neurosci; 2012 Feb; 32(8):2900-10. PubMed ID: 22357872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning rules and network repair in spike-timing-based computation networks.
    Hopfield JJ; Brody CD
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):337-42. PubMed ID: 14694191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised learning and adaptation in a model of adult neurogenesis.
    Cecchi GA; Petreanu LT; Alvarez-Buylla A; Magnasco MO
    J Comput Neurosci; 2001; 11(2):175-82. PubMed ID: 11717533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Principal component analysis of odor coding at the level of third-order olfactory neurons in Drosophila.
    Hiroi M; Ohkura M; Nakai J; Masuda N; Hashimoto K; Inoue K; Fiala A; Tabata T
    Genes Cells; 2013 Dec; 18(12):1070-81. PubMed ID: 24118654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Olfactory processing: massive convergence onto sparse codes.
    Stopfer M
    Curr Biol; 2007 May; 17(10):R363-4. PubMed ID: 17502089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive regulation of sparseness by feedforward inhibition.
    Assisi C; Stopfer M; Laurent G; Bazhenov M
    Nat Neurosci; 2007 Sep; 10(9):1176-84. PubMed ID: 17660812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.