BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18421679)

  • 1. Quantitative magnetic resonance spectroscopy in the entire human cervical spinal cord and beyond at 3T.
    Henning A; Schär M; Kollias SS; Boesiger P; Dydak U
    Magn Reson Med; 2008 Jun; 59(6):1250-8. PubMed ID: 18421679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocardiogram-triggered, higher order, projection-based B₀ shimming allows for fast and reproducible shim convergence in spinal cord ¹H MRS.
    Hock A; Fuchs A; Boesiger P; Kollias SS; Henning A
    NMR Biomed; 2013 Mar; 26(3):329-35. PubMed ID: 23065738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 Tesla.
    Marliani AF; Clementi V; Albini-Riccioli L; Agati R; Leonardi M
    Magn Reson Med; 2007 Jan; 57(1):160-3. PubMed ID: 17191230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo magnetic resonance spectroscopy detection of combined glutamate-glutamine in healthy upper cervical cord at 3 T.
    Solanky BS; Abdel-Aziz K; Yiannakas MC; Berry AM; Ciccarelli O; Wheeler-Kingshott CA
    NMR Biomed; 2013 Mar; 26(3):357-66. PubMed ID: 23281170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (1) H MRS in the human spinal cord at 7 T using a dielectric waveguide transmitter, RF shimming and a high density receive array.
    Henning A; Koning W; Fuchs A; Raaijmakers A; Bluemink JJ; van den Berg CA; Boer VO; Klomp DW
    NMR Biomed; 2016 Sep; 29(9):1231-9. PubMed ID: 27191947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord.
    Cooke FJ; Blamire AM; Manners DN; Styles P; Rajagopalan B
    Magn Reson Med; 2004 Jun; 51(6):1122-8. PubMed ID: 15170831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-water-suppressed proton MR spectroscopy improves spectral quality in the human spinal cord.
    Hock A; MacMillan EL; Fuchs A; Kreis R; Boesiger P; Kollias SS; Henning A
    Magn Reson Med; 2013 May; 69(5):1253-60. PubMed ID: 22745036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance spectroscopy of the cervical cord in amyotrophic lateral sclerosis.
    Carew JD; Nair G; Pineda-Alonso N; Usher S; Hu X; Benatar M
    Amyotroph Lateral Scler; 2011 May; 12(3):185-91. PubMed ID: 21143004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced field-of-view DTI segmentation of cervical spine tissue.
    Tang L; Wen Y; Zhou Z; von Deneen KM; Huang D; Ma L
    Magn Reson Imaging; 2013 Nov; 31(9):1507-14. PubMed ID: 23993792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss.
    Henning A; Fuchs A; Murdoch JB; Boesiger P
    NMR Biomed; 2009 Aug; 22(7):683-96. PubMed ID: 19259944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion tensor imaging of the spinal cord at 1.5 and 3.0 Tesla.
    Rossi C; Boss A; Lindig TM; Martirosian P; Steidle G; Maetzler W; Claussen CD; Klose U; Schick F
    Rofo; 2007 Mar; 179(3):219-24. PubMed ID: 17325991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo short TE localized 1H MR spectroscopy of mouse cervical spinal cord at very high magnetic field (11.75 T).
    Tachrount M; Duhamel G; Laurin J; Marqueste T; de Paula AM; Decherchi P; Cozzone PJ; Callot V
    Magn Reson Med; 2013 May; 69(5):1226-32. PubMed ID: 22692969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SELOVS: brain MRSI localization based on highly selective T1- and B1- insensitive outer-volume suppression at 3T.
    Henning A; Schär M; Schulte RF; Wilm B; Pruessmann KP; Boesiger P
    Magn Reson Med; 2008 Jan; 59(1):40-51. PubMed ID: 18050349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis--a quantitative T1 relaxation time mapping approach.
    Vaithianathar L; Tench CR; Morgan PS; Constantinescu CS
    J Neurol; 2003 Mar; 250(3):307-15. PubMed ID: 12638021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-weighted imaging of the entire spinal cord.
    Wilm BJ; Gamper U; Henning A; Pruessmann KP; Kollias SS; Boesiger P
    NMR Biomed; 2009 Feb; 22(2):174-81. PubMed ID: 18727164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo magnetic resonance imaging of the human cervical spinal cord at 3 Tesla.
    Korzan JR; Gorassini M; Emery D; Taher ZA; Beaulieu C
    J Magn Reson Imaging; 2002 Jul; 16(1):21-7. PubMed ID: 12112499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demyelinating lesions in the cervical cord in multiple sclerosis 10 years after onset of the disease. Correlation between MRI parameters and clinical course.
    Bonek R; Orlicka K; Maciejek Z
    Neurol Neurochir Pol; 2007; 41(3):229-33. PubMed ID: 17629816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple sclerosis presenting as an intramedullary cervical cord tumor.
    Lammoglia FJ; Short SR; Sweet DE; Pay N; Abay EA
    Kans Med; 1989 Jul; 90(7):219-21, 228. PubMed ID: 2761166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramedullary lipoma of the cervico-thoracic spinal cord.
    Çavuşoğlu M; Ciliz DS; Duran S; Elverici E
    JBR-BTR; 2014; 97(6):346-8. PubMed ID: 25786289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of 3T proton MR spectroscopy in the spinal cord - preliminary results.
    Wawrzyniak P; Hebda A; Heinze S; Bobek-Billewicz B
    Pol J Radiol; 2022; 87():e375-e380. PubMed ID: 35979148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.