BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18421696)

  • 1. Performance of a 200-MHz cryogenic RF probe designed for MRI and MRS of the murine brain.
    Ratering D; Baltes C; Nordmeyer-Massner J; Marek D; Rudin M
    Magn Reson Med; 2008 Jun; 59(6):1440-7. PubMed ID: 18421696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe.
    Baltes C; Radzwill N; Bosshard S; Marek D; Rudin M
    NMR Biomed; 2009 Oct; 22(8):834-42. PubMed ID: 19536757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased blood oxygen level-dependent (BOLD) sensitivity in the mouse somatosensory cortex during electrical forepaw stimulation using a cryogenic radiofrequency probe.
    Baltes C; Bosshard S; Mueggler T; Ratering D; Rudin M
    NMR Biomed; 2011 May; 24(4):439-46. PubMed ID: 22945293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-to-noise ratio of a mouse brain (13) C CryoProbe™ system in comparison with room temperature coils: spectroscopic phantom and in vivo results.
    Sack M; Wetterling F; Sartorius A; Ende G; Weber-Fahr W
    NMR Biomed; 2014 Jun; 27(6):709-15. PubMed ID: 24692120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First in vivo potassium-39 (³⁹K) MRI at 9.4 T using conventional copper radio frequency surface coil cooled to 77 K.
    Elabyad IA; Kalayciyan R; Shanbhag NC; Schad LR
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):334-45. PubMed ID: 24448595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of large-size superconducting coil in 0.21T MRI system.
    Lee KH; Cheng MC; Chan KC; Wong KK; Yeung SS; Lee KC; Ma QY; Yang ES
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2024-30. PubMed ID: 15536904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental development of a petal resonator surface coil.
    Rodríguez AO; Hidalgo SS; Rojas R; Barrios FA
    Magn Reson Imaging; 2005 Dec; 23(10):1027-33. PubMed ID: 16376189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a fused phantom for quantitative evaluation of brain metabolites and enhanced quality assurance testing for magnetic resonance imaging and spectroscopy.
    Song KH; Kim SY; Lee DW; Jung JY; Lee JH; Baek HM; Choe BY
    J Neurosci Methods; 2015 Nov; 255():75-84. PubMed ID: 26277420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transmit-only/receive-only (TORO) RF system for high-field MRI/MRS applications.
    Barberi EA; Gati JS; Rutt BK; Menon RS
    Magn Reson Med; 2000 Feb; 43(2):284-9. PubMed ID: 10680693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a miniature high-temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5T clinical whole-body scanner.
    Poirier-Quinot M; Ginefri JC; Girard O; Robert P; Darrasse L
    Magn Reson Med; 2008 Oct; 60(4):917-27. PubMed ID: 18816812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous cryogenic RF receive coil for
    Sánchez-Heredia JD; Baron R; Hansen ESS; Laustsen C; Zhurbenko V; Ardenkjaer-Larsen JH
    Magn Reson Med; 2020 Jul; 84(1):497-508. PubMed ID: 31782552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI.
    Robitaille PM
    J Comput Assist Tomogr; 1999; 23(6):879-90. PubMed ID: 10589562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T.
    Resmer F; Seton HC; Hutchison JM
    J Magn Reson; 2010 Mar; 203(1):57-65. PubMed ID: 20031458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy.
    Zhang X; Ugurbil K; Chen W
    Magn Reson Med; 2001 Sep; 46(3):443-50. PubMed ID: 11550234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White and gray matter contrast enhancement in MR images of the mouse brain in vivo using IR UTE with a cryo-coil at 9.4 T.
    Piędzia W; Jasiński K; Kalita K; Tomanek B; Węglarz WP
    J Neurosci Methods; 2014 Jul; 232():30-5. PubMed ID: 24809244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-temperature superconducting Helmholtz probe for microscopy at 9.4 T.
    Hurlston SE; Brey WW; Suddarth SA; Johnson GA
    Magn Reson Med; 1999 May; 41(5):1032-8. PubMed ID: 10332887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A radiofrequency coil to facilitate B₁⁺ shimming and parallel imaging acceleration in three dimensions at 7 T.
    Gilbert KM; Curtis AT; Gati JS; Klassen LM; Menon RS
    NMR Biomed; 2011 Aug; 24(7):815-23. PubMed ID: 21834005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4 T actively detunable transmit/receive transverse electromagnetic coil and 4-channel receive-only phased array for (1)H human brain studies.
    Avdievich NI; Hetherington HP
    Magn Reson Med; 2004 Dec; 52(6):1459-64. PubMed ID: 15562466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a new RF coil and gamma-ray radiation shielding assembly for improved MR image quality in SPECT/MRI.
    Ha S; Hamamura MJ; Roeck WW; Muftuler LT; Nalcioglu O
    Phys Med Biol; 2010 May; 55(9):2495-504. PubMed ID: 20371909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla.
    de Zwart JA; Ledden PJ; van Gelderen P; Bodurka J; Chu R; Duyn JH
    Magn Reson Med; 2004 Jan; 51(1):22-6. PubMed ID: 14705041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.