These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1258 related articles for article (PubMed ID: 18421835)

  • 21. Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle.
    Steriade M; Oakson G; Ropert N
    Exp Brain Res; 1982; 46(1):37-51. PubMed ID: 7067790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sleep-waking discharge of neurons in the posterior lateral hypothalamic area of cats.
    Szymusiak R; Iriye T; McGinty D
    Brain Res Bull; 1989; 23(1-2):111-20. PubMed ID: 2804703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of rostral and caudal brain stem reticular formation on thalamic neurons.
    Mohan Kumar V; Abdul Aleem ; Ahuja GK; Singh B
    Brain Res Bull; 1987 Jun; 18(6):761-5. PubMed ID: 3040192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mesencephalic and bulbar reticular influences on somatosensory cortical neurons: short- and long-latency effects.
    Schieppati M; Mariotti M; Mohan Kumar V; Mancia M
    Sleep; 1983; 6(3):186-95. PubMed ID: 6622877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined dynamics of EEG and evoked potentials. II. Studies of simultaneously recorded EEG-EPograms in the auditory pathway, reticular formation, and hippocampus of the cat brain during sleep.
    Başar E; Durusan R; Gönder A; Ungan P
    Biol Cybern; 1979 Sep; 34(1):21-30. PubMed ID: 486590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brainstem stimulation during sleep evokes abnormal rhythmic activity in thalamic neurons in feline penicillin epilepsy.
    Szymusiak R; Shouse MN; McGinty D
    Brain Res; 1996 Mar; 713(1-2):253-60. PubMed ID: 8724998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats.
    Dringenberg HC; Olmstead MC
    Neuroscience; 2003; 119(3):839-53. PubMed ID: 12809705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat.
    Denoyer M; Sallanon M; Buda C; Kitahama K; Jouvet M
    Brain Res; 1991 Jan; 539(2):287-303. PubMed ID: 1675907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of CNS activation versus EEG arousal during sleep on heart rate response and daytime tests.
    Guilleminault C; Abad VC; Philip P; Stoohs R
    Clin Neurophysiol; 2006 Apr; 117(4):731-9. PubMed ID: 16458068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basal forebrain and hypothalamic influences upon brain stem neurons.
    Mancia M; Mariotti M; Roman ER; Schieppati M
    Brain Res; 1976 May; 107(3):487-97. PubMed ID: 1268739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Electroencephalographic study with buspirone, a novel nonbenzodiazepine anxiolytic, and its major metabolite, 1-(2-pyrimidinyl)piperazine (1-PP), in rabbits].
    Kawasaki H; Nakamura S; Takasaki K
    Nihon Yakurigaku Zasshi; 1990 Mar; 95(3):91-104. PubMed ID: 1972369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reticular formation influence on neuronal transmission from perforant pathway through dentate gyrus.
    Winson J
    Brain Res; 1981 Nov; 225(1):37-49. PubMed ID: 6271341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of local cortical exclusion on evoked potentials in the reticular formation occurring in response to somatosensory stimulation].
    Zhuravin IA; Dobrylko AK; Kadantseva AG; Tolkunov BF
    Neirofiziologiia; 1981; 13(1):32-8. PubMed ID: 7219603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ascending reticular activating system in the rat: a 2-deoxyglucose study.
    Gonzalez-Lima F; Scheich H
    Brain Res; 1985 Sep; 344(1):70-88. PubMed ID: 4041870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat.
    Lin JS; Hou Y; Sakai K; Jouvet M
    J Neurosci; 1996 Feb; 16(4):1523-37. PubMed ID: 8778302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional organization of the brain stem reticular formation and sensory input.
    COURVILLE J; WALSH J; CORDEAU JP
    Science; 1962 Nov; 138(3544):973-5. PubMed ID: 14023457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 63.