BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18422071)

  • 1. [Macrophages and arginase induction as a mechanism for parasite escape].
    Stempin CC; Cerban FM
    Medicina (B Aires); 2007; 67(6 Pt 2):737-46. PubMed ID: 18422071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases.
    Ouaissi A; Ouaissi M
    Arch Immunol Ther Exp (Warsz); 2005; 53(2):102-14. PubMed ID: 15928579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant SSP4 protein from Trypanosoma cruzi amastigotes regulates nitric oxide production by macrophages.
    Ramos-Ligonio A; López-Monteon A; Talamás-Rohana P; Rosales-Encina JL
    Parasite Immunol; 2004 Oct; 26(10):409-18. PubMed ID: 15752118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed death ligand 2 regulates arginase induction and modifies Trypanosoma cruzi survival in macrophages during murine experimental infection.
    Dulgerian LR; Garrido VV; Stempin CC; Cerbán FM
    Immunology; 2011 May; 133(1):29-40. PubMed ID: 21303364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophages in experimental Chagas' disease.
    Kuhn RE
    Immunol Ser; 1994; 60():495-502. PubMed ID: 8251589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of insulin-like growth factor-I on Leishmania amazonensis promastigote arginase activation and reciprocal inhibition of NOS2 pathway in macrophage in vitro.
    Vendrame CM; Carvalho MD; Rios FJ; Manuli ER; Petitto-Assis F; Goto H
    Scand J Immunol; 2007; 66(2-3):287-96. PubMed ID: 17635806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen.
    Stempin C; Giordanengo L; Gea S; Cerbán F
    J Leukoc Biol; 2002 Oct; 72(4):727-34. PubMed ID: 12377942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing classical and alternative macrophage activation in macrophage/neutrophil-specific IL-4 receptor-alpha-deficient mice.
    Brombacher F; Arendse B; Peterson R; Hölscher A; Hölscher C
    Methods Mol Biol; 2009; 531():225-52. PubMed ID: 19347321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokines and cell adhesion receptors in the regulation of immunity to Trypanosoma cruzi.
    Savino W; Villa-Verde DM; Mendes-da-Cruz DA; Silva-Monteiro E; Perez AR; Aoki Mdel P; Bottasso O; Guiñazú N; Silva-Barbosa SD; Gea S
    Cytokine Growth Factor Rev; 2007; 18(1-2):107-24. PubMed ID: 17339126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sabotage and exploitation in macrophages parasitized by intracellular protozoans.
    Denkers EY; Butcher BA
    Trends Parasitol; 2005 Jan; 21(1):35-41. PubMed ID: 15639739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential macrophage expression of IL-12 and IL-23 upon innate immune activation defines rat autoimmune susceptibility.
    Andersson A; Kokkola R; Wefer J; Erlandsson-Harris H; Harris RA
    J Leukoc Biol; 2004 Dec; 76(6):1118-24. PubMed ID: 15371491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage activation: classical versus alternative.
    Classen A; Lloberas J; Celada A
    Methods Mol Biol; 2009; 531():29-43. PubMed ID: 19347309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative activation of ruminant macrophages by Fasciola hepatica.
    Flynn RJ; Irwin JA; Olivier M; Sekiya M; Dalton JP; Mulcahy G
    Vet Immunol Immunopathol; 2007 Nov; 120(1-2):31-40. PubMed ID: 17719651
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Volpini X; Ambrosio LF; Fozzatti L; Insfran C; Stempin CC; Cervi L; Motran CC
    Front Immunol; 2018; 9():859. PubMed ID: 29743880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-classical type of alveolar macrophage response to Trichinella spiralis infection.
    Dzik JM; Gołos B; Jagielska E; Zielinski Z; Wałajtys-Rode E
    Parasite Immunol; 2004 Apr; 26(4):197-205. PubMed ID: 15367297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inducible nitric oxide synthase and arginase expression in heart tissue during acute Trypanosoma cruzi infection in mice: arginase I is expressed in infiltrating CD68+ macrophages.
    Cuervo H; Pineda MA; Aoki MP; Gea S; Fresno M; Gironès N
    J Infect Dis; 2008 Jun; 197(12):1772-82. PubMed ID: 18473687
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Nzoumbou-Boko R; De Muylder G; Semballa S; Lecordier L; Dauchy FA; Gobert AP; Holzmuller P; Lemesre JL; Bras-Gonçalves R; Barnabé C; Courtois P; Daulouède S; Beschin A; Pays E; Vincendeau P
    J Immunol; 2017 Sep; 199(5):1762-1771. PubMed ID: 28739879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular parasite kill: flow cytometry and NO detection for rapid discrimination between anti-leishmanial activity and macrophage activation.
    Kram D; Thäle C; Kolodziej H; Kiderlen AF
    J Immunol Methods; 2008 Apr; 333(1-2):79-88. PubMed ID: 18313691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin enhances pro-inflammatory cytokine levels and protects against Chagas disease.
    Santello FH; Frare EO; Caetano LC; AlonsoToldo MP; do Prado JC
    J Pineal Res; 2008 Aug; 45(1):79-85. PubMed ID: 18284549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro induction of intracellular killing of parasitic protozoa by macrophages.
    Mauel J
    Immunobiology; 1982 Apr; 161(3-4):392-400. PubMed ID: 6807834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.