BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18422313)

  • 1. Metal-mediated self-assembly of protein superstructures: influence of secondary interactions on protein oligomerization and aggregation.
    Salgado EN; Lewis RA; Faraone-Mennella J; Tezcan FA
    J Am Chem Soc; 2008 May; 130(19):6082-4. PubMed ID: 18422313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of protein oligomerization symmetry by metal coordination: C2 and C3 symmetrical assemblies through Cu(II) and Ni(II) coordination.
    Salgado EN; Lewis RA; Mossin S; Rheingold AL; Tezcan FA
    Inorg Chem; 2009 Apr; 48(7):2726-8. PubMed ID: 19267481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De Novo Design of an Allosteric Metalloprotein Assembly with Strained Disulfide Bonds.
    Churchfield LA; Medina-Morales A; Brodin JD; Perez A; Tezcan FA
    J Am Chem Soc; 2016 Oct; 138(40):13163-13166. PubMed ID: 27649076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Templated Design of Chemically Switchable Protein Assemblies with High-Affinity Coordination Sites.
    Kakkis A; Gagnon D; Esselborn J; Britt RD; Tezcan FA
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):21940-21944. PubMed ID: 32830423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How First Shell-Second Shell Interactions and Metal Substitution Modulate Protein Function.
    Mazmanian K; Dudev T; Lim C
    Inorg Chem; 2018 Nov; 57(22):14052-14061. PubMed ID: 29906119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-directed protein self-assembly.
    Salgado EN; Radford RJ; Tezcan FA
    Acc Chem Res; 2010 May; 43(5):661-72. PubMed ID: 20192262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the Structural and Energetic Basis of Allostery in a De Novo Designed Metalloprotein Assembly.
    Churchfield LA; Alberstein RG; Williamson LM; Tezcan FA
    J Am Chem Soc; 2018 Aug; 140(31):10043-10053. PubMed ID: 29996654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Directed Design of Supramolecular Protein Assemblies.
    Bailey JB; Subramanian RH; Churchfield LA; Tezcan FA
    Methods Enzymol; 2016; 580():223-50. PubMed ID: 27586336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a zinc binding site into the de novo designed protein DS119 with a βαβ structure.
    Zhu C; Zhang C; Liang H; Lai L
    Protein Cell; 2011 Dec; 2(12):1006-13. PubMed ID: 22231358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New perspectives of zinc coordination environments in proteins.
    Maret W
    J Inorg Biochem; 2012 Jun; 111():110-6. PubMed ID: 22196021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-dependent assembly of a protein nano-cage.
    Cristie-David AS; Marsh ENG
    Protein Sci; 2019 Sep; 28(9):1620-1629. PubMed ID: 31278804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary interactions involving zinc-bound ligands: roles in structural stabilization and macromolecular interactions.
    Namuswe F; Berg JM
    J Inorg Biochem; 2012 Jun; 111():146-9. PubMed ID: 22196020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H-bonding interactions and control of thiolate nucleophilicity and specificity in model complexes of zinc metalloproteins.
    Smith JN; Hoffman JT; Shirin Z; Carrano CJ
    Inorg Chem; 2005 Mar; 44(6):2012-7. PubMed ID: 15762728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.
    Kocyła A; Adamczyk J; Krężel A
    Metallomics; 2018 Jan; 10(1):120-131. PubMed ID: 29240217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility of metal binding sites in proteins on a database scale.
    Babor M; Greenblatt HM; Edelman M; Sobolev V
    Proteins; 2005 May; 59(2):221-30. PubMed ID: 15726624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.