BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18422485)

  • 1. Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA.
    Lewin A; Crow A; Hodson CT; Hederstedt L; Le Brun NE
    Biochem J; 2008 Aug; 414(1):81-91. PubMed ID: 18422485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E; Huber-Wunderlich M; Glockshuber R
    Protein Sci; 1998 May; 7(5):1233-44. PubMed ID: 9605329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CXXC motif: a rheostat in the active site.
    Chivers PT; Prehoda KE; Raines RT
    Biochemistry; 1997 Apr; 36(14):4061-6. PubMed ID: 9099998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General acid/base catalysis in the active site of Escherichia coli thioredoxin.
    Chivers PT; Raines RT
    Biochemistry; 1997 Dec; 36(50):15810-6. PubMed ID: 9398311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ.
    Shi YY; Tang W; Hao SF; Wang CC
    Biochemistry; 2005 Feb; 44(5):1683-9. PubMed ID: 15683252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis.
    Erlendsson LS; Acheson RM; Hederstedt L; Le Brun NE
    J Biol Chem; 2003 May; 278(20):17852-8. PubMed ID: 12637552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH on the oxidation-reduction properties of thioredoxins.
    Setterdahl AT; Chivers PT; Hirasawa M; Lemaire SD; Keryer E; Miginiac-Maslow M; Kim SK; Mason J; Jacquot JP; Longbine CC; de Lamotte-Guery F; Knaff DB
    Biochemistry; 2003 Dec; 42(50):14877-84. PubMed ID: 14674763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic pKa values of Escherichia coli thioredoxin.
    Chivers PT; Prehoda KE; Volkman BF; Kim BM; Markley JL; Raines RT
    Biochemistry; 1997 Dec; 36(48):14985-91. PubMed ID: 9398223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site.
    Crow A; Lewin A; Hecht O; Carlsson Möller M; Moore GR; Hederstedt L; Le Brun NE
    J Biol Chem; 2009 Aug; 284(35):23719-33. PubMed ID: 19535335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin.
    Roos G; Garcia-Pino A; Van Belle K; Brosens E; Wahni K; Vandenbussche G; Wyns L; Loris R; Messens J
    J Mol Biol; 2007 May; 368(3):800-11. PubMed ID: 17368484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel member of the protein disulfide oxidoreductase family from Aeropyrum pernix K1: structure, function and electrostatics.
    D'Ambrosio K; Pedone E; Langella E; De Simone G; Rossi M; Pedone C; Bartolucci S
    J Mol Biol; 2006 Sep; 362(4):743-52. PubMed ID: 16934838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2.
    El Hajjaji H; Dumoulin M; Matagne A; Colau D; Roos G; Messens J; Collet JF
    J Mol Biol; 2009 Feb; 386(1):60-71. PubMed ID: 19073194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of substrate specificity in Bacillus subtilis ResA, a thioredoxin-like protein involved in cytochrome c maturation.
    Colbert CL; Wu Q; Erbel PJ; Gardner KH; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4410-5. PubMed ID: 16537372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional characterization of CcmG from Pseudomonas aeruginosa, a key component of the bacterial cytochrome c maturation apparatus.
    Di Matteo A; Calosci N; Gianni S; Jemth P; Brunori M; Travaglini-Allocatelli C
    Proteins; 2010 Aug; 78(10):2213-21. PubMed ID: 20544959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis.
    Lafaye C; Iwema T; Carpentier P; Jullian-Binard C; Kroll JS; Collet JF; Serre L
    J Mol Biol; 2009 Oct; 392(4):952-66. PubMed ID: 19631659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity.
    Fetrow JS; Godzik A; Skolnick J
    J Mol Biol; 1998 Oct; 282(4):703-11. PubMed ID: 9743619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-protein interaction as a powering source of oxidoreductive reactivity.
    Lin TY
    Mol Biosyst; 2010 Aug; 6(8):1454-62. PubMed ID: 20473443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarities and differences in the thioredoxin superfamily.
    Carvalho AP; Fernandes PA; Ramos MJ
    Prog Biophys Mol Biol; 2006 Jul; 91(3):229-48. PubMed ID: 16098567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.