These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18422624)

  • 1. High spatial resolution analysis of fungal cell biochemistry--bridging the analytical gap using synchrotron FTIR spectromicroscopy.
    Kaminskyj S; Jilkine K; Szeghalmi A; Gough K
    FEMS Microbiol Lett; 2008 Jul; 284(1):1-8. PubMed ID: 18422624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive method for examining whole-cell biochemical composition in single cells of filamentous fungi using synchrotron FTIR spectromicroscopy.
    Jilkine K; Gough KM; Julian R; Kaminskyj SG
    J Inorg Biochem; 2008 Mar; 102(3):540-6. PubMed ID: 18158185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy.
    Isenor M; Kaminskyj SG; Rodriguez RJ; Redman RS; Gough KM
    Analyst; 2010 Dec; 135(12):3249-54. PubMed ID: 20963233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions.
    Szeghalmi A; Kaminskyj S; Gough KM
    Anal Bioanal Chem; 2007 Mar; 387(5):1779-89. PubMed ID: 17106657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining light microscopy, dielectric spectroscopy, MALDI intact cell mass spectrometry, FTIR spectromicroscopy and multivariate data mining for morphological and physiological bioprocess characterization of filamentous organisms.
    Posch AE; Koch C; Helmel M; Marchetti-Deschmann M; Macfelda K; Lendl B; Allmaier G; Herwig C
    Fungal Genet Biol; 2013 Feb; 51():1-11. PubMed ID: 23220594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High spatial resolution surface imaging and analysis of fungal cells using SEM and AFM.
    Kaminskyj SG; Dahms TE
    Micron; 2008 Jun; 39(4):349-61. PubMed ID: 18068995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of methodologies for separation of fungal isolates using Fourier transform infrared (FTIR) spectroscopy and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) microspectroscopy.
    Oberle J; Dighton J; Arbuckle-Keil G
    Fungal Biol; 2015 Nov; 119(11):1100-1114. PubMed ID: 26466883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy.
    Holman HY; Miles R; Hao Z; Wozei E; Anderson LM; Yang H
    Anal Chem; 2009 Oct; 81(20):8564-70. PubMed ID: 19775125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of metabolite formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier-Transform Infrared spectromicroscopy.
    Goff KL; Quaroni L; Wilson KE
    Analyst; 2009 Nov; 134(11):2216-9. PubMed ID: 19838406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectromicroscopy of biochemistry in functional single cells.
    Quaroni L; Zlateva T
    Analyst; 2011 Aug; 136(16):3219-32. PubMed ID: 21677942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts.
    Santos C; Fraga ME; Kozakiewicz Z; Lima N
    Res Microbiol; 2010 Mar; 161(2):168-75. PubMed ID: 20079832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared.
    Levenson E; Lerch P; Martin MC
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):323-8. PubMed ID: 18552422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure.
    Bowen AD; Davidson FA; Keatch R; Gadd GM
    Fungal Genet Biol; 2007 Jun; 44(6):484-91. PubMed ID: 17267249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of filamentous fungal cell shape by septins and formins.
    Gladfelter AS
    Nat Rev Microbiol; 2006 Mar; 4(3):223-9. PubMed ID: 16429163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier transform infrared microscopy and imaging: detection of fungi in wood.
    Naumann A; Navarro-González M; Peddireddi S; Kües U; Polle A
    Fungal Genet Biol; 2005 Oct; 42(10):829-35. PubMed ID: 16098775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy.
    Mou Y; Rabalais JW
    J Forensic Sci; 2009 Jul; 54(4):846-50. PubMed ID: 19457149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of chemically oxidized polystyrene as co-substrate by filamentous fungi.
    Motta O; Proto A; De Carlo F; De Caro F; Santoro E; Brunetti L; Capunzo M
    Int J Hyg Environ Health; 2009 Jan; 212(1):61-6. PubMed ID: 18222723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimorphism in fungal plant pathogens.
    Nadal M; García-Pedrajas MD; Gold SE
    FEMS Microbiol Lett; 2008 Jul; 284(2):127-34. PubMed ID: 18479435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome visualisation in filamentous fungi.
    Wieloch W
    J Microbiol Methods; 2006 Oct; 67(1):1-8. PubMed ID: 16870283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of fungal networks in complex environments.
    Boswell GP; Jacobs H; Ritz K; Gadd GM; Davidson FA
    Bull Math Biol; 2007 Feb; 69(2):605-34. PubMed ID: 16841267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.