BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18422645)

  • 1. A novel isoform of pantothenate synthetase in the Archaea.
    Ronconi S; Jonczyk R; Genschel U
    FEBS J; 2008 Jun; 275(11):2754-64. PubMed ID: 18422645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of a novel phosphopantothenate synthetase from the hyperthermophilic archaea, Thermococcus onnurineus NA1.
    Kim MK; An YJ; Cha SS
    Biochem Biophys Res Commun; 2013 Oct; 439(4):533-8. PubMed ID: 24021277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea.
    Yokooji Y; Tomita H; Atomi H; Imanaka T
    J Biol Chem; 2009 Oct; 284(41):28137-28145. PubMed ID: 19666462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the pantothenate synthetase from Mycobacterium tuberculosis, snapshots of the enzyme in action.
    Wang S; Eisenberg D
    Biochemistry; 2006 Feb; 45(6):1554-61. PubMed ID: 16460002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the dynamics of pantothenate synthetase from M. tuberculosis and E. coli: computational studies.
    Tan YS; Fuentes G; Verma C
    Proteins; 2011 Jun; 79(6):1715-27. PubMed ID: 21425349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A detailed biochemical characterization of phosphopantothenate synthetase, a novel enzyme involved in coenzyme A biosynthesis in the Archaea.
    Ishibashi T; Tomita H; Yokooji Y; Morikita T; Watanabe B; Hiratake J; Kishimoto A; Kita A; Miki K; Imanaka T; Atomi H
    Extremophiles; 2012 Nov; 16(6):819-28. PubMed ID: 22940806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site residues in Mycobacterium tuberculosis pantothenate synthetase required in the formation and stabilization of the adenylate intermediate.
    Zheng R; Dam TK; Brewer CF; Blanchard JS
    Biochemistry; 2004 Jun; 43(22):7171-8. PubMed ID: 15170354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(3):509-22. PubMed ID: 17882322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase.
    White EL; Southworth K; Ross L; Cooley S; Gill RB; Sosa MI; Manouvakhova A; Rasmussen L; Goulding C; Eisenberg D; Fletcher TM
    J Biomol Screen; 2007 Feb; 12(1):100-5. PubMed ID: 17175524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state and pre-steady-state kinetic analysis of Mycobacterium tuberculosis pantothenate synthetase.
    Zheng R; Blanchard JS
    Biochemistry; 2001 Oct; 40(43):12904-12. PubMed ID: 11669627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coenzyme A biosynthesis: reconstruction of the pathway in archaea and an evolutionary scenario based on comparative genomics.
    Genschel U
    Mol Biol Evol; 2004 Jul; 21(7):1242-51. PubMed ID: 15014152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea.
    Levin I; Giladi M; Altman-Price N; Ortenberg R; Mevarech M
    Mol Microbiol; 2004 Dec; 54(5):1307-18. PubMed ID: 15554970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice).
    Genschel U; Powell CA; Abell C; Smith AG
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):669-78. PubMed ID: 10417331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of pantoate kinase and phosphopantothenate synthetase from Methanospirillum hungatei.
    Katoh H; Tamaki H; Tokutake Y; Hanada S; Chohnan S
    J Biosci Bioeng; 2013 Apr; 115(4):372-6. PubMed ID: 23200110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The design and synthesis of inhibitors of pantothenate synthetase.
    Tuck KL; Saldanha SA; Birch LM; Smith AG; Abell C
    Org Biomol Chem; 2006 Oct; 4(19):3598-610. PubMed ID: 16990935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for substrate binding and the catalytic mechanism of type III pantothenate kinase.
    Yang K; Strauss E; Huerta C; Zhang H
    Biochemistry; 2008 Feb; 47(5):1369-80. PubMed ID: 18186650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria.
    Zmijewski MA; Skórko-Glonek J; Tanfani F; Banecki B; Kotlarz A; Macario AJ; Lipińska B
    Acta Biochim Pol; 2007; 54(2):245-52. PubMed ID: 17565388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-induced closing of the active site revealed by the crystal structure of pantothenate synthetase from Staphylococcus aureus.
    Satoh A; Konishi S; Tamura H; Stickland HG; Whitney HM; Smith AG; Matsumura H; Inoue T
    Biochemistry; 2010 Aug; 49(30):6400-10. PubMed ID: 20568730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positional isotope exchange analysis of the pantothenate synthetase reaction.
    Williams L; Zheng R; Blanchard JS; Raushel FM
    Biochemistry; 2003 May; 42(17):5108-13. PubMed ID: 12718554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of phosphopantothenate synthetase from Thermococcus kodakarensis.
    Kishimoto A; Kita A; Ishibashi T; Tomita H; Yokooji Y; Imanaka T; Atomi H; Miki K
    Proteins; 2014 Sep; 82(9):1924-36. PubMed ID: 24638914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.