BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18422877)

  • 1. Kinetic properties of hexameric tyrosinase from the crustacean Palinurus elephas.
    Brack A; Hellmann N; Decker H
    Photochem Photobiol; 2008; 84(3):692-9. PubMed ID: 18422877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors.
    Nillius D; Jaenicke E; Decker H
    FEBS Lett; 2008 Mar; 582(5):749-54. PubMed ID: 18258201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis.
    Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW
    J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones.
    Fenoll LG; Rodríguez-López JN; García-Sevilla F; García-Ruiz PA; Varón R; García-Cánovas F; Tudela J
    Biochim Biophys Acta; 2001 Jul; 1548(1):1-22. PubMed ID: 11451433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic evaluation of aminoethylisothiourea on mushroom tyrosinase activity.
    Li SB; Nie HL; Zhang HT; Xue Y; Zhu LM
    Appl Biochem Biotechnol; 2010 Oct; 162(3):641-53. PubMed ID: 19763898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2017 Aug; 73(Pt 8):491-499. PubMed ID: 28777094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic cooperativity of tyrosinase. A general mechanism.
    Muñoz-Muñoz JL; Garcia-Molina F; Varon R; Tudela J; Garcia-Cánovas F; Rodríguez-López JN
    Acta Biochim Pol; 2011; 58(3):303-11. PubMed ID: 21887411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications.
    Halaouli S; Asther M; Sigoillot JC; Hamdi M; Lomascolo A
    J Appl Microbiol; 2006 Feb; 100(2):219-32. PubMed ID: 16430498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the characteristics of fungal and plant tyrosinases.
    Selinheimo E; NiEidhin D; Steffensen C; Nielsen J; Lomascolo A; Halaouli S; Record E; O'Beirne D; Buchert J; Kruus K
    J Biotechnol; 2007 Jul; 130(4):471-80. PubMed ID: 17602775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates.
    Kim YJ; Chung JE; Kurisawa M; Uyama H; Kobayashi S
    Biomacromolecules; 2004; 5(2):474-9. PubMed ID: 15003008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the interaction of N/S compounds with a dicopper center: tyrosinase inhibition and model studies.
    Buitrago E; Vuillamy A; Boumendjel A; Yi W; Gellon G; Hardré R; Philouze C; Serratrice G; Jamet H; Réglier M; Belle C
    Inorg Chem; 2014 Dec; 53(24):12848-58. PubMed ID: 25415587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approximate analytical solution to the lag period of monophenolase activity of tyrosinase.
    Molina FG; Muñoz JL; Varón R; López JN; Cánovas FG; Tudela J
    Int J Biochem Cell Biol; 2007; 39(1):238-52. PubMed ID: 17010655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-phase synthesis of mimosine tetrapeptides and their inhibitory activities on neuraminidase and tyrosinase.
    Upadhyay A; Chompoo J; Taira N; Fukuta M; Gima S; Tawata S
    J Agric Food Chem; 2011 Dec; 59(24):12858-63. PubMed ID: 22047208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lag kinetics of tyrosinase: its physiological implications.
    Ramaiah A
    Indian J Biochem Biophys; 1996 Oct; 33(5):349-56. PubMed ID: 9029814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function correlations in tyrosinases.
    Kanteev M; Goldfeder M; Fishman A
    Protein Sci; 2015 Sep; 24(9):1360-9. PubMed ID: 26104241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosinases from crustaceans form hexamers.
    Jaenicke E; Decker H
    Biochem J; 2003 Apr; 371(Pt 2):515-23. PubMed ID: 12466021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two potent suicide substrates of mushroom tyrosinase: 7,8,4'-trihydroxyisoflavone and 5,7,8,4'-tetrahydroxyisoflavone.
    Chang TS
    J Agric Food Chem; 2007 Mar; 55(5):2010-5. PubMed ID: 17295516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.