These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 18422966)
1. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition. Bilokapic S; Rokov Plavec J; Ban N; Weygand-Durasevic I FEBS J; 2008 Jun; 275(11):2831-44. PubMed ID: 18422966 [TBL] [Abstract][Full Text] [Related]
2. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations. Lesjak S; Weygand-Durasevic I FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487 [TBL] [Abstract][Full Text] [Related]
3. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation. Dulic M; Pozar J; Bilokapic S; Weygand-Durasevic I; Gruic-Sovulj I Biochimie; 2011 Oct; 93(10):1761-9. PubMed ID: 21704670 [TBL] [Abstract][Full Text] [Related]
4. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. Bilokapic S; Maier T; Ahel D; Gruic-Sovulj I; Söll D; Weygand-Durasevic I; Ban N EMBO J; 2006 Jun; 25(11):2498-509. PubMed ID: 16675947 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii. Itoh Y; Sekine S; Kuroishi C; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S RNA Biol; 2008; 5(3):169-77. PubMed ID: 18818520 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. Gruic-Sovulj I; Rokov-Plavec J; Weygand-Durasevic I FEBS Lett; 2007 Oct; 581(26):5110-4. PubMed ID: 17931630 [TBL] [Abstract][Full Text] [Related]
7. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme. Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308 [TBL] [Abstract][Full Text] [Related]
8. Idiosyncratic helix-turn-helix motif in Methanosarcina barkeri seryl-tRNA synthetase has a critical architectural role. Bilokapic S; Ivic N; Godinic-Mikulcic V; Piantanida I; Ban N; Weygand-Durasevic I J Biol Chem; 2009 Apr; 284(16):10706-13. PubMed ID: 19228694 [TBL] [Abstract][Full Text] [Related]
9. A single amino acid substitution affects the substrate specificity of the seryl-tRNA synthetase homologue. Maršavelski A; Lesjak S; Močibob M; Weygand-Đurašević I; Tomić S Mol Biosyst; 2014 Dec; 10(12):3207-16. PubMed ID: 25272963 [TBL] [Abstract][Full Text] [Related]
10. Identification of amino acids in the N-terminal domain of atypical methanogenic-type Seryl-tRNA synthetase critical for tRNA recognition. Jaric J; Bilokapic S; Lesjak S; Crnkovic A; Ban N; Weygand-Durasevic I J Biol Chem; 2009 Oct; 284(44):30643-51. PubMed ID: 19734148 [TBL] [Abstract][Full Text] [Related]
11. Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations. McClendon CL; Vaidehi N; Kam VW; Zhang D; Goddard WA Protein Eng Des Sel; 2006 May; 19(5):195-203. PubMed ID: 16517553 [TBL] [Abstract][Full Text] [Related]
12. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522 [TBL] [Abstract][Full Text] [Related]
13. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex. Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri. Dutta S; Nandi N J Phys Chem B; 2015 Aug; 119(34):10832-48. PubMed ID: 25794108 [TBL] [Abstract][Full Text] [Related]
15. Amino acid discrimination by a highly differentiated metal center of an aminoacyl-tRNA synthetase. Zhang CM; Perona JJ; Hou YM Biochemistry; 2003 Sep; 42(37):10931-7. PubMed ID: 12974627 [TBL] [Abstract][Full Text] [Related]
16. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. Yaremchuk A; Tukalo M; Grøtli M; Cusack S J Mol Biol; 2001 Jun; 309(4):989-1002. PubMed ID: 11399074 [TBL] [Abstract][Full Text] [Related]
17. Classical molecular dynamics simulation of seryl tRNA synthetase and threonyl tRNA synthetase bound with tRNA and aminoacyl adenylate. Dutta S; Nandi N J Biomol Struct Dyn; 2019 Feb; 37(2):336-358. PubMed ID: 29320932 [TBL] [Abstract][Full Text] [Related]
18. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase. Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865 [TBL] [Abstract][Full Text] [Related]
19. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. Arnez JG; Dock-Bregeon AC; Moras D J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708 [TBL] [Abstract][Full Text] [Related]