These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18423043)

  • 1. Diversification and adaptive sequence evolution of Caenorhabditis lysozymes (Nematoda: Rhabditidae).
    Schulenburg H; Boehnisch C
    BMC Evol Biol; 2008 Apr; 8():114. PubMed ID: 18423043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification.
    Hoogewijs D; De Henau S; Dewilde S; Moens L; Couvreur M; Borgonie G; Vinogradov SN; Roy SW; Vanfleteren JR
    BMC Evol Biol; 2008 Oct; 8():279. PubMed ID: 18844991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protist-type lysozymes of the nematode Caenorhabditis elegans contribute to resistance against pathogenic Bacillus thuringiensis.
    Boehnisch C; Wong D; Habig M; Isermann K; Michiels NK; Roeder T; May RC; Schulenburg H
    PLoS One; 2011; 6(9):e24619. PubMed ID: 21931778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new lysozyme from the eastern oyster, Crassostrea virginica, and a possible evolutionary pathway for i-type lysozymes in bivalves from host defense to digestion.
    Xue Q; Hellberg ME; Schey KL; Itoh N; Eytan RI; Cooper RK; La Peyre JF
    BMC Evol Biol; 2010 Jul; 10():213. PubMed ID: 20633278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution.
    Haerty W; Artieri C; Khezri N; Singh RS; Gupta BP
    BMC Genomics; 2008 Aug; 9():399. PubMed ID: 18752680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae.
    Gutierrez A; Sommer RJ
    Nucleic Acids Res; 2004; 32(21):6388-96. PubMed ID: 15576683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repertoire and evolution of miRNA genes in four divergent nematode species.
    de Wit E; Linsen SE; Cuppen E; Berezikov E
    Genome Res; 2009 Nov; 19(11):2064-74. PubMed ID: 19755563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide characterization, evolution, structure, and expression analysis of the F-box genes in Caenorhabditis.
    Wang A; Chen W; Tao S
    BMC Genomics; 2021 Dec; 22(1):889. PubMed ID: 34895149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis.
    Hare EE; Loer CM
    BMC Evol Biol; 2004 Aug; 4():24. PubMed ID: 15287963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomics and adaptive selection of the ATP-binding-cassette gene family in caenorhabditis species.
    Zhao Z; Thomas JH; Chen N; Sheps JA; Baillie DL
    Genetics; 2007 Mar; 175(3):1407-18. PubMed ID: 17194779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode and tempo of molecular evolution in the nematode caenorhabditis: cytochrome oxidase II and calmodulin sequences.
    Thomas WK; Wilson AC
    Genetics; 1991 Jun; 128(2):269-79. PubMed ID: 1649066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phylogeny of caenorhabditis reveals frequent loss of introns during nematode evolution.
    Cho S; Jin SW; Cohen A; Ellis RE
    Genome Res; 2004 Jul; 14(7):1207-20. PubMed ID: 15231741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae.
    Kennedy BP; Aamodt EJ; Allen FL; Chung MA; Heschl MF; McGhee JD
    J Mol Biol; 1993 Feb; 229(4):890-908. PubMed ID: 8445654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Evolution of C-Type Lysozyme in Vampire Bats.
    He C; Wei Y; Zhu Y; Xia Y; Irwin DM; Liu Y
    J Mol Evol; 2019 Dec; 87(9-10):309-316. PubMed ID: 31506780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive evolution in the SRZ chemoreceptor families of Caenorhabditis elegans and Caenorhabditis briggsae.
    Thomas JH; Kelley JL; Robertson HM; Ly K; Swanson WJ
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4476-81. PubMed ID: 15761060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of cow nonstomach lysozyme genes.
    Irwin DM
    Genome; 2004 Dec; 47(6):1082-90. PubMed ID: 15644966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative genomic analysis of the small heat shock proteins in Caenorhabditis elegans and briggsae.
    Aevermann BD; Waters ER
    Genetica; 2008 Jul; 133(3):307-19. PubMed ID: 17940840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive functional diversification of lysozyme in insectivorous bats.
    Liu Y; He G; Xu H; Han X; Jones G; Rossiter SJ; Zhang S
    Mol Biol Evol; 2014 Nov; 31(11):2829-35. PubMed ID: 25135943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss.
    Robertson HM
    Genome Res; 1998 May; 8(5):449-63. PubMed ID: 9582190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Genomics of Gene Loss and Gain in Caenorhabditis and Other Nematodes.
    Rödelsperger C
    Methods Mol Biol; 2018; 1704():419-432. PubMed ID: 29277876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.