BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18423438)

  • 1. A new method, using cis-regulatory control, for blocking embryonic gene expression.
    Smith J; Davidson EH
    Dev Biol; 2008 Jun; 318(2):360-5. PubMed ID: 18423438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
    Pieplow A; Dastaw M; Sakuma T; Sakamoto N; Yamamoto T; Yajima M; Oulhen N; Wessel GM
    Dev Biol; 2021 Apr; 472():85-97. PubMed ID: 33482173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo.
    Amore G; Davidson EH
    Dev Biol; 2006 May; 293(2):555-64. PubMed ID: 16574094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo.
    Wahl ME; Hahn J; Gora K; Davidson EH; Oliveri P
    Dev Biol; 2009 Nov; 335(2):428-41. PubMed ID: 19679118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
    McCarty CM; Coffman JA
    Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis.
    Ransick A; Davidson EH
    Dev Biol; 2012 Apr; 364(2):259-67. PubMed ID: 22509525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. microRNA-31 modulates skeletal patterning in the sea urchin embryo.
    Stepicheva NA; Song JL
    Development; 2015 Nov; 142(21):3769-80. PubMed ID: 26400092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P16 is an essential regulator of skeletogenesis in the sea urchin embryo.
    Cheers MS; Ettensohn CA
    Dev Biol; 2005 Jul; 283(2):384-96. PubMed ID: 15935341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1.
    Sampilo NF; Stepicheva NA; Song JL
    Dev Biol; 2021 Apr; 472():98-114. PubMed ID: 33484703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo.
    Sharma T; Ettensohn CA
    Development; 2010 Apr; 137(7):1149-57. PubMed ID: 20181745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
    Cole AG; Rizzo F; Martinez P; Fernandez-Serra M; Arnone MI
    Development; 2009 Feb; 136(4):541-9. PubMed ID: 19144720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population genetics of cis-regulatory sequences that operate during embryonic development in the sea urchin Strongylocentrotus purpuratus.
    Garfield D; Haygood R; Nielsen WJ; Wray GA
    Evol Dev; 2012; 14(2):152-67. PubMed ID: 23017024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo.
    Barsi JC; Davidson EH
    Dev Biol; 2016 Jan; 409(1):310-318. PubMed ID: 26522848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis.
    Khor JM; Guerrero-Santoro J; Ettensohn CA
    Development; 2019 Aug; 146(16):. PubMed ID: 31331943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.