BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1842354)

  • 1. Cell movements driving neurulation in avian embryos.
    Schoenwolf GC
    Dev Suppl; 1991; Suppl 2():157-68. PubMed ID: 1842354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of neurepithelial cell rearrangement during avian neurulation are determined prior to notochordal inductive interactions.
    Alvarez IS; Schoenwolf GC
    Dev Biol; 1991 Jan; 143(1):78-92. PubMed ID: 1985025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive-streak stages.
    Lopez-Sanchez C; Garcia-Martinez V; Schoenwolf GC
    Cells Tissues Organs; 2001; 169(4):334-46. PubMed ID: 11490112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate mapping the avian epiblast with focal injections of a fluorescent-histochemical marker: ectodermal derivatives.
    Schoenwolf GC; Sheard P
    J Exp Zool; 1990 Sep; 255(3):323-39. PubMed ID: 2203877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoderm movement and fate during avian gastrulation and neurulation.
    Schoenwolf GC; Garcia-Martinez V; Dias MS
    Dev Dyn; 1992 Mar; 193(3):235-48. PubMed ID: 1600242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate mapping the avian neural plate with quail/chick chimeras: origin of prospective median wedge cells.
    Schoenwolf GC; Bortier H; Vakaet L
    J Exp Zool; 1989 Mar; 249(3):271-8. PubMed ID: 2708947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further evidence of extrinsic forces in bending of the neural plate.
    Smith JL; Schoenwolf GC
    J Comp Neurol; 1991 May; 307(2):225-36. PubMed ID: 1856324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental analyses of the rearrangement of ectodermal cells during gastrulation and neurulation in avian embryos.
    Schoenwolf GC; Yuan S
    Cell Tissue Res; 1995 May; 280(2):243-51. PubMed ID: 7781022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a cellular and molecular understanding of neurulation.
    Colas JF; Schoenwolf GC
    Dev Dyn; 2001 Jun; 221(2):117-45. PubMed ID: 11376482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and mapping studies of the paranodal and postnodal levels of the neural plate during chick neurulation.
    Schoenwolf GC
    Anat Rec; 1992 Jun; 233(2):281-90. PubMed ID: 1605392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurulation in amniote vertebrates: a novel view deduced from the use of quail-chick chimeras.
    Le Douarin NM; Teillet MA; Catala M
    Int J Dev Biol; 1998; 42(7):909-16. PubMed ID: 9853821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate.
    Schoenwolf GC; Alvarez IS
    Development; 1989 Jul; 106(3):427-39. PubMed ID: 2598817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining subregions of Hensen's node essential for caudalward movement, midline development and cell survival.
    Charrier JB; Teillet MA; Lapointe F; Le Douarin NM
    Development; 1999 Nov; 126(21):4771-83. PubMed ID: 10518494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell behaviors underlying notochord formation and extension in avian embryos: quantitative and immunocytochemical studies.
    Sausedo RA; Schoenwolf GC
    Anat Rec; 1993 Sep; 237(1):58-70. PubMed ID: 8214642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate.
    Smith JL; Schoenwolf GC; Quan J
    J Comp Neurol; 1994 Apr; 342(1):144-51. PubMed ID: 8207124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural plate- and neural tube-forming potential of isolated epiblast areas in avian embryos.
    Schoenwolf GC; Everaert S; Bortier H; Vakaet L
    Anat Embryol (Berl); 1989; 179(6):541-9. PubMed ID: 2751116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo induction of the organizer and formation of the primitive streak in an experimental model of notochord reconstitution in avian embryos.
    Yuan S; Schoenwolf GC
    Development; 1998 Jan; 125(2):201-13. PubMed ID: 9486794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axis development in avian embryos: the ability of Hensen's node to self-differentiate, as analyzed with heterochronic grafting experiments.
    Inagaki T; Schoenwolf GC
    Anat Embryol (Berl); 1993 Jul; 188(1):1-11. PubMed ID: 8214619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer.
    Lawson A; Schoenwolf GC
    Genesis; 2001 Apr; 29(4):188-95. PubMed ID: 11309852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the morphogenesis of the early rudiments of the developing central nervous system.
    Schoenwolf GC
    Scan Electron Microsc; 1982; (Pt 1):289-308. PubMed ID: 7167749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.