BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18423601)

  • 1. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges.
    Verheij MM; Cools AR
    Eur J Pharmacol; 2008 May; 585(2-3):228-44. PubMed ID: 18423601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals.
    Fusa K; Takahashi I; Watanabe S; Aono Y; Ikeda H; Saigusa T; Nagase H; Suzuki T; Koshikawa N; Cools AR
    Neuroscience; 2005; 130(3):745-55. PubMed ID: 15590157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single exposure to novelty differentially affects the accumbal dopaminergic system of apomorphine-susceptible and apomorphine-unsusceptible rats.
    van der Elst MC; Verheij MM; Roubos EW; Ellenbroek BA; Veening JG; Cools AR
    Life Sci; 2005 Feb; 76(12):1391-406. PubMed ID: 15670618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesolimbic alpha-, but not beta-adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive storage vesicles.
    Verheij MM; Cools AR
    Neuroscience; 2009 Sep; 162(4):1163-73. PubMed ID: 19464350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenergic receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour.
    Ikeda H; Moribe S; Sato M; Kotani A; Koshikawa N; Cools AR
    Eur J Pharmacol; 2007 Jan; 554(2-3):175-82. PubMed ID: 17113067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An intact dopaminergic system is required for context-conditioned release of 5-HT in the nucleus accumbens of postweaning isolation-reared rats.
    Fulford AJ; Marsden CA
    Neuroscience; 2007 Oct; 149(2):392-400. PubMed ID: 17869434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reboxetine-induced increase of accumbal dopamine efflux is inhibited by l-propranolol: a microdialysis study with freely moving rats.
    Mizoguchi N; Saigusa T; Aono Y; Sekino R; Takada K; Oi Y; Ueda K; Koshikawa N; Cools AR
    Eur J Pharmacol; 2008 Dec; 601(1-3):94-8. PubMed ID: 18996113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumbal noradrenaline that contributes to the alpha-adrenoceptor-mediated release of dopamine from reserpine-sensitive storage vesicles in the nucleus accumbens is derived from alpha-methyl-para-tyrosine-sensitive pools.
    Verheij MM; Cools AR
    J Neural Transm (Vienna); 2009 Apr; 116(4):389-94. PubMed ID: 19221691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catecholamine mapping within nucleus accumbens: differences in basal and amphetamine-stimulated efflux of norepinephrine and dopamine in shell and core.
    McKittrick CR; Abercrombie ED
    J Neurochem; 2007 Mar; 100(5):1247-56. PubMed ID: 17241132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence.
    Paredes RG; Agmo A
    Prog Neurobiol; 2004 Jun; 73(3):179-226. PubMed ID: 15236835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High and low responders to novelty: effects of a catecholamine synthesis inhibitor on novelty-induced changes in behaviour and release of accumbal dopamine.
    Saigusa T; Tuinstra T; Koshikawa N; Cools AR
    Neuroscience; 1999; 88(4):1153-63. PubMed ID: 10336126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential contribution of storage pools to the extracellular amount of accumbal dopamine in high and low responders to novelty: effects of reserpine.
    Verheij MM; Cools AR
    J Neurochem; 2007 Feb; 100(3):810-21. PubMed ID: 17144901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reserpine differentially affects cocaine-induced behavior in low and high responders to novelty.
    Verheij MM; Cools AR
    Pharmacol Biochem Behav; 2011 Mar; 98(1):43-53. PubMed ID: 21145910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine and alcoholism: neurobiological basis of ethanol abuse.
    Tupala E; Tiihonen J
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 Dec; 28(8):1221-47. PubMed ID: 15588749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell.
    Deutch AY; Cameron DS
    Neuroscience; 1992; 46(1):49-56. PubMed ID: 1350665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct contributions of dopamine receptors in the nucleus accumbens core or shell to established cocaine reinforcement under a second-order schedule.
    Di Ciano P
    Eur Neuropsychopharmacol; 2008 Dec; 18(12):888-96. PubMed ID: 18760571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rats that differentially respond to cocaine differ in their dopaminergic storage capacity of the nucleus accumbens.
    Verheij MM; de Mulder EL; De Leonibus E; van Loo KM; Cools AR
    J Neurochem; 2008 Jun; 105(6):2122-33. PubMed ID: 18315567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse.
    Tassin JP
    Biochem Pharmacol; 2008 Jan; 75(1):85-97. PubMed ID: 17686465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shell/core differences in mu- and delta-opioid receptor modulation of dopamine efflux in nucleus accumbens.
    Hipólito L; Sánchez-Catalán MJ; Zanolini I; Polache A; Granero L
    Neuropharmacology; 2008 Aug; 55(2):183-9. PubMed ID: 18582908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex differences in dopamine- and vesicular monoamine-transporter functions.
    Dluzen DE; McDermott JL
    Ann N Y Acad Sci; 2008 Oct; 1139():140-50. PubMed ID: 18991858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.