These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 18423866)

  • 21. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination.
    Lee HM; Bhat A; Scholz JP; Galloway JC
    Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upper frequency limits of bilateral coordination patterns.
    Morrison S; Hong SL; Newell KM
    Neurosci Lett; 2009 May; 454(3):233-8. PubMed ID: 19429090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual feedback reduces bimanual coupling of movement amplitudes, but not of directions.
    Cardoso de Oliveira S; Barthélémy S
    Exp Brain Res; 2005 Mar; 162(1):78-88. PubMed ID: 15772872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans.
    Sakamoto M; Endoh T; Nakajima T; Tazoe T; Shiozawa S; Komiyama T
    Clin Neurophysiol; 2006 Jun; 117(6):1301-11. PubMed ID: 16651023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time dependence of coupling in frequency-scaled bimanual coordination.
    James EG; Molenaar PC; Newell KM
    Neurosci Lett; 2011 Feb; 490(2):156-60. PubMed ID: 21194554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Movement interference during action observation as emergent coordination.
    Richardson MJ; Campbell WL; Schmidt RC
    Neurosci Lett; 2009 Jan; 449(2):117-22. PubMed ID: 18996439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bilateral phase entrainment by movement-elicited afference contributes equally to the stability of in-phase and antiphase coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Neurosci Lett; 2006 May; 399(1-2):71-5. PubMed ID: 16472912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proprioceptive regulation of interlimb behavior: interference between passive movement and active coordination dynamics.
    Serrien DJ; Li Y; Steyvers M; Debaere F; Swinnen SP
    Exp Brain Res; 2001 Oct; 140(4):411-9. PubMed ID: 11685394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of temporal and spatial accuracy of alternating arm movements in multiple sclerosis patients treated with deep brain stimulation of the thalamic ventralis intermedius nucleus (VIM).
    Spiegel J; Dillmann U; Moringlane JR
    Zentralbl Neurochir; 2007 May; 68(2):67-72. PubMed ID: 17614086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing the attractor strength of intra- and interpersonal interlimb coordination using cross-recurrence analysis.
    Richardson MJ; Lopresti-Goodman S; Mancini M; Kay B; Schmidt RC
    Neurosci Lett; 2008 Jun; 438(3):340-5. PubMed ID: 18487016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interlimb coordination in rhythmic leg movements: spontaneous and training-induced manifestations in human infants.
    Musselman KE; Yang JF
    J Neurophysiol; 2008 Oct; 100(4):2225-34. PubMed ID: 18650307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explanatory limitations of the HKB model: incentives for a two-tiered model of rhythmic interlimb coordination.
    Peper CL; Ridderikhoff A; Daffertshofer A; Beek PJ
    Hum Mov Sci; 2004 Nov; 23(5):673-97. PubMed ID: 15589628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordination between arm and leg movements during locomotion.
    Donker SF; Beek PJ; Wagenaar RC; Mulder T
    J Mot Behav; 2001 Mar; 33(1):86-102. PubMed ID: 11303522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase entrainment strength scales with movement amplitude disparity.
    de Boer BJ; Peper CE; Ridderikhoff A; Beek PJ
    Motor Control; 2013 Oct; 17(4):399-411. PubMed ID: 23756357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of multifrequency coordination using parametric driving: theory and experiment.
    Assisi CG; Jirsa VK; Kelso JA
    Biol Cybern; 2005 Jul; 93(1):6-21. PubMed ID: 15926066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bimanual coupling effects during arm immobilization and passive movements.
    Garbarini F; Rabuffetti M; Piedimonte A; Solito G; Berti A
    Hum Mov Sci; 2015 Jun; 41():114-26. PubMed ID: 25797919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deviations in upper-limb function of the less-affected side in congenital hemiparesis.
    Steenbergen B; Meulenbroek RG
    Neuropsychologia; 2006; 44(12):2296-307. PubMed ID: 16797611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of arm and leg movement during human locomotion.
    Zehr EP; Duysens J
    Neuroscientist; 2004 Aug; 10(4):347-61. PubMed ID: 15271262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directional constraints during bimanual coordination: the interplay between intrinsic and extrinsic directions as revealed by head motions.
    Meesen RL; Wenderoth N; Temprado JJ; Swinnen SP
    Behav Brain Res; 2008 Mar; 187(2):361-70. PubMed ID: 17983673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental coupling modulates the attractors of rhythmic coordination.
    Kudo K; Park H; Kay BA; Turvey MT
    J Exp Psychol Hum Percept Perform; 2006 Jun; 32(3):599-609. PubMed ID: 16822126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.