BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18423896)

  • 1. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology.
    Wang S; Fischer PM
    Trends Pharmacol Sci; 2008 Jun; 29(6):302-13. PubMed ID: 18423896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target.
    Krystof V; Baumli S; Fürst R
    Curr Pharm Des; 2012; 18(20):2883-90. PubMed ID: 22571657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update.
    Wu T; Qin Z; Tian Y; Wang J; Xu C; Li Z; Bian J
    J Med Chem; 2020 Nov; 63(22):13228-13257. PubMed ID: 32866383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological targeting of CDK9 in cardiac hypertrophy.
    Krystof V; Chamrád I; Jorda R; Kohoutek J
    Med Res Rev; 2010 Jul; 30(4):646-66. PubMed ID: 19757441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors.
    Németh G; Greff Z; Sipos A; Varga Z; Székely R; Sebestyén M; Jászay Z; Béni S; Nemes Z; Pirat JL; Volle JN; Virieux D; Gyuris Á; Kelemenics K; Ay E; Minarovits J; Szathmary S; Kéri G; Orfi L
    J Med Chem; 2014 May; 57(10):3939-65. PubMed ID: 24742150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel, selective CDK9 inhibitors for the treatment of HIV infection.
    Németh G; Varga Z; Greff Z; Bencze G; Sipos A; Szántai-Kis C; Baska F; Gyuris A; Kelemenics K; Szathmáry Z; Minárovits J; Kéri G; Orfi L
    Curr Med Chem; 2011; 18(3):342-58. PubMed ID: 21143121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach.
    Lee DJ; Zeidner JF
    Expert Opin Investig Drugs; 2019 Nov; 28(11):989-1001. PubMed ID: 31612739
    [No Abstract]   [Full Text] [Related]  

  • 8. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy.
    Sonawane YA; Taylor MA; Napoleon JV; Rana S; Contreras JI; Natarajan A
    J Med Chem; 2016 Oct; 59(19):8667-8684. PubMed ID: 27171036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis.
    Iankova I; Petersen RK; Annicotte JS; Chavey C; Hansen JB; Kratchmarova I; Sarruf D; Benkirane M; Kristiansen K; Fajas L
    Mol Endocrinol; 2006 Jul; 20(7):1494-505. PubMed ID: 16484339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halogen bonds form the basis for selective P-TEFb inhibition by DRB.
    Baumli S; Endicott JA; Johnson LN
    Chem Biol; 2010 Sep; 17(9):931-6. PubMed ID: 20851342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9.
    Phillipson LJ; Segal DH; Nero TL; Parker MW; Wan SS; de Silva M; Guthridge MA; Wei AH; Burns CJ
    Bioorg Med Chem; 2015 Oct; 23(19):6280-96. PubMed ID: 26349627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Insights on Selective and Specific Inhibitors of Cyclin Dependent Kinase 9 Enzyme (CDK9) for the Purpose of Cancer Therapy.
    Karati D; Mahadik KSR; Trivedi P; Kumar D
    Anticancer Agents Med Chem; 2023; 23(4):383-403. PubMed ID: 35708082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax.
    King HM; Rana S; Kubica SP; Mallareddy JR; Kizhake S; Ezell EL; Zahid M; Naldrett MJ; Alvarez S; Law HC; Woods NT; Natarajan A
    Bioorg Med Chem Lett; 2021 Jul; 43():128061. PubMed ID: 33895280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclin-dependent kinase 9 forms a complex with GATA4 and is involved in the differentiation of mouse ES cells into cardiomyocytes.
    Kaichi S; Takaya T; Morimoto T; Sunagawa Y; Kawamura T; Ono K; Shimatsu A; Baba S; Heike T; Nakahata T; Hasegawa K
    J Cell Physiol; 2011 Jan; 226(1):248-54. PubMed ID: 20665673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting CDK9: a promising therapeutic opportunity in prostate cancer.
    Rahaman MH; Kumarasiri M; Mekonnen LB; Yu M; Diab S; Albrecht H; Milne RW; Wang S
    Endocr Relat Cancer; 2016 Dec; 23(12):T211-T226. PubMed ID: 27582311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity.
    Hole AJ; Baumli S; Shao H; Shi S; Huang S; Pepper C; Fischer PM; Wang S; Endicott JA; Noble ME
    J Med Chem; 2013 Feb; 56(3):660-70. PubMed ID: 23252711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overview of CDK9 as a target in cancer research.
    Morales F; Giordano A
    Cell Cycle; 2016; 15(4):519-27. PubMed ID: 26766294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity.
    Bian J; Ren J; Li Y; Wang J; Xu X; Feng Y; Tang H; Wang Y; Li Z
    Bioorg Chem; 2018 Dec; 81():373-381. PubMed ID: 30196207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CDK9 as an Appealing Target for Therapeutic Interventions.
    Eyvazi S; Hejazi MS; Kahroba H; Abasi M; Zamiri RE; Tarhriz V
    Curr Drug Targets; 2019; 20(4):453-464. PubMed ID: 30362418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided design, synthesis and validation of 2-phenylquinazolinone fragments as CDK9 inhibitors with anti-HIV-1 Tat-mediated transcription activity.
    Sancineto L; Iraci N; Massari S; Attanasio V; Corazza G; Barreca ML; Sabatini S; Manfroni G; Avanzi NR; Cecchetti V; Pannecouque C; Marcello A; Tabarrini O
    ChemMedChem; 2013 Dec; 8(12):1941-53. PubMed ID: 24150998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.