BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18424181)

  • 1. Variability of BOLD response evoked by foot vibrotactile stimulation: influence of vibration amplitude and stimulus waveform.
    Siedentopf CM; Heubach K; Ischebeck A; Gallasch E; Fend M; Mottaghy FM; Koppelstaetter F; Haala IA; Krause BJ; Felber S; Gerstenbrand F; Golaszewski SM
    Neuroimage; 2008 Jun; 41(2):504-10. PubMed ID: 18424181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human brain structures related to plantar vibrotactile stimulation: a functional magnetic resonance imaging study.
    Golaszewski SM; Siedentopf CM; Koppelstaetter F; Fend M; Ischebeck A; Gonzalez-Felipe V; Haala I; Struhal W; Mottaghy FM; Gallasch E; Felber SR; Gerstenbrand F
    Neuroimage; 2006 Feb; 29(3):923-9. PubMed ID: 16253525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination.
    Li Hegner Y; Saur R; Veit R; Butts R; Leiberg S; Grodd W; Braun C
    J Neurophysiol; 2007 Jan; 97(1):264-71. PubMed ID: 17065253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of cognitive demand on human cortical activation associated with vibrotactile stimulation.
    Albanese MC; Duerden EG; Bohotin V; Rainville P; Duncan GH
    J Neurophysiol; 2009 Sep; 102(3):1623-31. PubMed ID: 19553476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact force- and amplitude-controllable vibrating probe for somatosensory mapping of plantar afferences with fMRI.
    Gallasch E; Golaszewski SM; Fend M; Siedentopf CM; Koppelstaetter F; Eisner W; Gerstenbrand F; Felber SR
    J Magn Reson Imaging; 2006 Nov; 24(5):1177-82. PubMed ID: 17031838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeling for space or for time: task-dependent modulation of the cortical representation of identical vibrotactile stimuli.
    Godde B; Diamond ME; Braun C
    Neurosci Lett; 2010 Aug; 480(2):143-7. PubMed ID: 20561566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI.
    Tang K; Staines WR; Black SE; McIlroy WE
    J Neurosci Methods; 2009 Mar; 178(1):65-74. PubMed ID: 19109997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation in SI and SII: the influence of vibrotactile amplitude during passive and task-relevant stimulation.
    Nelson AJ; Staines WR; Graham SJ; McIlroy WE
    Brain Res Cogn Brain Res; 2004 Apr; 19(2):174-84. PubMed ID: 15019713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duration-dependent response of SI to vibrotactile stimulation in squirrel monkey.
    Simons SB; Chiu J; Favorov OV; Whitsel BL; Tommerdahl M
    J Neurophysiol; 2007 Mar; 97(3):2121-9. PubMed ID: 17035362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of the rat somatosensory cortex at different frequencies and pulse widths.
    Van Camp N; Verhoye M; Van der Linden A
    NMR Biomed; 2006 Feb; 19(1):10-7. PubMed ID: 16408324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of simultaneous ratings on cortical BOLD effects during painful and non-painful stimulation.
    Schoedel AL; Zimmermann K; Handwerker HO; Forster C
    Pain; 2008 Mar; 135(1-2):131-41. PubMed ID: 17611034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain activations in response to vibrotactile tooth stimulation: a psychophysical and fMRI study.
    Trulsson M; Francis ST; Bowtell R; McGlone F
    J Neurophysiol; 2010 Oct; 104(4):2257-65. PubMed ID: 20668275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of vibrotactile input to human auditory cortex.
    Caetano G; Jousmäki V
    Neuroimage; 2006 Jan; 29(1):15-28. PubMed ID: 16168673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prior Information biases stimulus representations during vibrotactile decision making.
    Preuschhof C; Schubert T; Villringer A; Heekeren HR
    J Cogn Neurosci; 2010 May; 22(5):875-87. PubMed ID: 19413475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetoencephalographic study of vibrotactile evoked transient and steady-state responses in human somatosensory cortex.
    Nangini C; Ross B; Tam F; Graham SJ
    Neuroimage; 2006 Oct; 33(1):252-62. PubMed ID: 16884928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Psychophysical investigations into cortical encoding of vibrotactile stimuli.
    Harris JA
    Novartis Found Symp; 2006; 270():238-45; discussion 246-50, 285-92. PubMed ID: 16649718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional-magnetic-resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip.
    Summers IR; Francis ST; Bowtell RW; McGlone FP; Clemence M
    J Acoust Soc Am; 2009 Feb; 125(2):1033-9. PubMed ID: 19206877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures.
    Mobascher A; Brinkmeyer J; Warbrick T; Musso F; Wittsack HJ; Saleh A; Schnitzler A; Winterer G
    Neuroimage; 2009 Apr; 45(3):917-26. PubMed ID: 19166948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of methods for characterizing the event-related BOLD timeseries in rapid fMRI.
    Serences JT
    Neuroimage; 2004 Apr; 21(4):1690-700. PubMed ID: 15050591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and nonlinearities of the BOLD response at very short stimulus durations.
    Yeşilyurt B; Uğurbil K; Uludağ K
    Magn Reson Imaging; 2008 Sep; 26(7):853-62. PubMed ID: 18479876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.