BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18424249)

  • 1. Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs.
    Bolland BJRF; Kanczler JM; Dunlop DG; Oreffo ROC
    Bone; 2008 Jul; 43(1):195-202. PubMed ID: 18424249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of human bone marrow stromal cells and poly(dl-lactic acid) as a biological bone graft extender in impaction bone grafting.
    Bolland BJ; Kanczler JM; Ginty PJ; Howdle SM; Shakesheff KM; Dunlop DG; Oreffo RO
    Biomaterials; 2008 Aug; 29(22):3221-7. PubMed ID: 18456320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers.
    Wong HK; Ivan Lam CR; Wen F; Mark Chong SK; Tan NS; Jerry C; Pal M; Tan LP
    Biofabrication; 2016 Jan; 8(1):015004. PubMed ID: 26741237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications.
    Young S; Kretlow JD; Nguyen C; Bashoura AG; Baggett LS; Jansen JA; Wong M; Mikos AG
    Tissue Eng Part B Rev; 2008 Sep; 14(3):295-306. PubMed ID: 18657028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion of human bone marrow stromal cells on poly-(DL-lactide-co-glycolide) (PDL LGA) hollow fibres designed for use in skeletal tissue engineering.
    Morgan SM; Tilley S; Perera S; Ellis MJ; Kanczler J; Chaudhuri JB; Oreffo RO
    Biomaterials; 2007 Dec; 28(35):5332-43. PubMed ID: 17822756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering.
    Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE
    J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D,L-lactide) scaffolds in vivo.
    Sahar DE; Walker JA; Wang HT; Stephenson SM; Shah AR; Krishnegowda NK; Wenke JC
    J Craniofac Surg; 2012 May; 23(3):913-8. PubMed ID: 22627404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microporous Polylactic Acid Scaffolds Enable Fluorescence-Based Perfusion Imaging of Intrinsic In Vivo Vascularization.
    Koepple C; Pollmann L; Pollmann NS; Schulte M; Kneser U; Gretz N; Schmidt VJ
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.
    Pang Y; Tsigkou O; Spencer JA; Lin CP; Neville C; Grottkau B
    Tissue Eng Part C Methods; 2015 Oct; 21(10):1025-31. PubMed ID: 25962617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.
    Schantz JT; Hutmacher DW; Lam CX; Brinkmann M; Wong KM; Lim TC; Chou N; Guldberg RE; Teoh SH
    Tissue Eng; 2003; 9 Suppl 1():S127-39. PubMed ID: 14511476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis.
    Min Z; Shichang Z; Chen X; Yufang Z; Changqing Z
    Biomater Sci; 2015 Aug; 3(8):1236-44. PubMed ID: 26222039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation.
    Kanczler JM; Ginty PJ; Barry JJ; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO
    Biomaterials; 2008 Apr; 29(12):1892-900. PubMed ID: 18234329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs.
    Monfoulet LE; Becquart P; Marchat D; Vandamme K; Bourguignon M; Pacard E; Viateau V; Petite H; Logeart-Avramoglou D
    Tissue Eng Part A; 2014 Jul; 20(13-14):1827-40. PubMed ID: 24447025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs.
    Zou D; Zhang Z; He J; Zhang K; Ye D; Han W; Zhou J; Wang Y; Li Q; Liu X; Zhang X; Wang S; Hu J; Zhu C; Zhang W; zhou Y; Fu H; Huang Y; Jiang X
    Biomaterials; 2012 Mar; 33(7):2097-108. PubMed ID: 22172336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells.
    Zhang R; Gao Z; Geng W; Yan X; Chen F; Liu Y
    Artif Organs; 2012 Dec; 36(12):1036-46. PubMed ID: 23020776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clinical application of tissue engineered bone repair of human craniomaxillofacial bone defects].
    Chai G; Zhang Y; Liu W; Cui L; Cao YL
    Zhonghua Yi Xue Za Zhi; 2003 Oct; 83(19):1676-81. PubMed ID: 14642102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass® Scaffolds.
    El-Gendy R; Kirkham J; Newby PJ; Mohanram Y; Boccaccini AR; Yang XB
    Tissue Eng Part A; 2015 Jul; 21(13-14):2034-43. PubMed ID: 25923923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.