These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Liquid-liquid phase transition temperatures increase when lipid bilayers are supported on glass. Gunderson RS; Honerkamp-Smith AR Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1965-1971. PubMed ID: 29752899 [TBL] [Abstract][Full Text] [Related]
5. Molecular motion at the critical point in lipid membranes. McConnell H; Radhakrishnan A Biophys J; 2008 Jul; 95(2):L22-4. PubMed ID: 18487306 [TBL] [Abstract][Full Text] [Related]
6. Simulations of edge behavior in a mixed-lipid bilayer: fluctuation analysis. Jiang Y; Kindt JT J Chem Phys; 2007 Jan; 126(4):045105. PubMed ID: 17286515 [TBL] [Abstract][Full Text] [Related]
7. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Honerkamp-Smith AR; Veatch SL; Keller SL Biochim Biophys Acta; 2009 Jan; 1788(1):53-63. PubMed ID: 18930706 [TBL] [Abstract][Full Text] [Related]
8. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Veatch SL; Keller SL Biophys J; 2003 Nov; 85(5):3074-83. PubMed ID: 14581208 [TBL] [Abstract][Full Text] [Related]
9. Domain nucleation rates and interfacial line tensions in supported bilayers of ternary mixtures containing galactosylceramide. Blanchette CD; Lin WC; Orme CA; Ratto TV; Longo ML Biophys J; 2008 Apr; 94(7):2691-7. PubMed ID: 18065459 [TBL] [Abstract][Full Text] [Related]
10. Composition fluctuations, chemical exchange, and nuclear relaxation in membranes containing cholesterol. Radhakrishnan A; McConnell H J Chem Phys; 2007 May; 126(18):185101. PubMed ID: 17508832 [TBL] [Abstract][Full Text] [Related]
11. Fluctuation mediated interactions due to rigidity mismatch and their effect on miscibility of lipid mixtures in multicomponent membranes. Dean DS; Parsegian VA; Podgornika R J Phys Condens Matter; 2015 Jun; 27(21):214004. PubMed ID: 25965339 [TBL] [Abstract][Full Text] [Related]
12. Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol. Putzel GG; Schick M Biophys J; 2008 Nov; 95(10):4756-62. PubMed ID: 18708463 [TBL] [Abstract][Full Text] [Related]
13. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations. Rosetti C; Pastorino C J Phys Chem B; 2012 Mar; 116(11):3525-37. PubMed ID: 22369354 [TBL] [Abstract][Full Text] [Related]
14. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids. Rawicz W; Smith BA; McIntosh TJ; Simon SA; Evans E Biophys J; 2008 Jun; 94(12):4725-36. PubMed ID: 18339739 [TBL] [Abstract][Full Text] [Related]
15. Computer simulations of the phase separation in model membranes. Baoukina S; Mendez-Villuendas E; Bennett WF; Tieleman DP Faraday Discuss; 2013; 161():63-75; discussion 113-50. PubMed ID: 23805738 [TBL] [Abstract][Full Text] [Related]
16. Lattice simulations of phase morphology on lipid bilayers: renormalization, membrane shape, and electrostatic dipole interactions. Amazon JJ; Feigenson GW Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022702. PubMed ID: 25353504 [TBL] [Abstract][Full Text] [Related]
17. Domain formation in membranes with quenched protein obstacles: lateral heterogeneity and the connection to universality classes. Fischer T; Vink RL J Chem Phys; 2011 Feb; 134(5):055106. PubMed ID: 21303166 [TBL] [Abstract][Full Text] [Related]
18. Hyperscaling relationship between the interfacial tension of liquids and their correlation length near the critical point. Mayoral E; Goicochea AG Soft Matter; 2014 Dec; 10(45):9054-8. PubMed ID: 25299248 [TBL] [Abstract][Full Text] [Related]