BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18424524)

  • 1. Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of Tna operon expression.
    Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2008 Jul; 190(14):4791-7. PubMed ID: 18424524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli.
    Gong M; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
    Cruz-Vera LR; New A; Squires C; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3140-6. PubMed ID: 17293420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.
    Yang R; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2009 Jun; 191(11):3445-50. PubMed ID: 19329641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression.
    Cruz-Vera LR; Rajagopal S; Squires C; Yanofsky C
    Mol Cell; 2005 Aug; 19(3):333-43. PubMed ID: 16061180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNA(Pro).
    Gong F; Ito K; Nakamura Y; Yanofsky C
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):8997-9001. PubMed ID: 11470925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducing tna operon regulation in vitro in an S-30 system. Tryptophan induction inhibits cleavage of TnaC peptidyl-tRNA.
    Gong F; Yanofsky C
    J Biol Chem; 2001 Jan; 276(3):1974-83. PubMed ID: 11050101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of tryptophanase operon expression in vitro: accumulation of TnaC-peptidyl-tRNA in a release factor 2-depleted S-30 extract prevents Rho factor action, simulating induction.
    Gong F; Yanofsky C
    J Biol Chem; 2002 May; 277(19):17095-100. PubMed ID: 11880383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of ribosome release in regulation of tna operon expression in Escherichia coli.
    Konan KV; Yanofsky C
    J Bacteriol; 1999 Mar; 181(5):1530-6. PubMed ID: 10049385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of tnaC of Escherichia coli inhibits growth by depleting tRNA2Pro availability.
    Gong M; Gong F; Yanofsky C
    J Bacteriol; 2006 Mar; 188(5):1892-8. PubMed ID: 16484200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan inhibits Proteus vulgaris TnaC leader peptide elongation, activating tna operon expression.
    Cruz-Vera LR; Yang R; Yanofsky C
    J Bacteriol; 2009 Nov; 191(22):7001-6. PubMed ID: 19767424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulatory TnaC nascent peptide preferentially inhibits release factor 2-mediated hydrolysis of peptidyl-tRNA.
    Emmanuel JS; Sengupta A; Gordon ER; Noble JT; Cruz-Vera LR
    J Biol Chem; 2019 Dec; 294(50):19224-19235. PubMed ID: 31712310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon.
    Konan KV; Yanofsky C
    J Bacteriol; 1997 Mar; 179(5):1774-9. PubMed ID: 9045840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling.
    van der Stel AX; Gordon ER; Sengupta A; Martínez AK; Klepacki D; Perry TN; Herrero Del Valle A; Vázquez-Laslop N; Sachs MS; Cruz-Vera LR; Innis CA
    Nat Commun; 2021 Sep; 12(1):5340. PubMed ID: 34504068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function.
    Martínez AK; Shirole NH; Murakami S; Benedik MJ; Sachs MS; Cruz-Vera LR
    Nucleic Acids Res; 2012 Mar; 40(5):2247-57. PubMed ID: 22110039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho-dependent transcription termination in the tna operon of Escherichia coli: roles of the boxA sequence and the rut site.
    Konan KV; Yanofsky C
    J Bacteriol; 2000 Jul; 182(14):3981-8. PubMed ID: 10869076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instruction of translating ribosome by nascent peptide.
    Gong F; Yanofsky C
    Science; 2002 Sep; 297(5588):1864-7. PubMed ID: 12228716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues.
    Judd HNG; Martínez AK; Klepacki D; Vázquez-Laslop N; Sachs MS; Cruz-Vera LR
    J Biol Chem; 2024 Mar; 300(3):105780. PubMed ID: 38395310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan.
    Martínez AK; Gordon E; Sengupta A; Shirole N; Klepacki D; Martinez-Garriga B; Brown LM; Benedik MJ; Yanofsky C; Mankin AS; Vazquez-Laslop N; Sachs MS; Cruz-Vera LR
    Nucleic Acids Res; 2014 Jan; 42(2):1245-56. PubMed ID: 24137004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.