BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18424859)

  • 1. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism.
    During A; Doraiswamy S; Harrison EH
    J Lipid Res; 2008 Aug; 49(8):1715-24. PubMed ID: 18424859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins.
    Thomas SE; Harrison EH
    J Lipid Res; 2016 Oct; 57(10):1865-1878. PubMed ID: 27538825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for the selective uptake of macular carotenoids mediated by the HDL cholesterol receptor SR-BI.
    Li B; George EW; Vachali P; Chang FY; Gorusupudi A; Arunkumar R; Giauque NA; Wan Z; Frederick JM; Bernstein PS
    Exp Eye Res; 2023 Apr; 229():109429. PubMed ID: 36863431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe.
    During A; Dawson HD; Harrison EH
    J Nutr; 2005 Oct; 135(10):2305-12. PubMed ID: 16177187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans.
    Borel P; Lietz G; Goncalves A; Szabo de Edelenyi F; Lecompte S; Curtis P; Goumidi L; Caslake MJ; Miles EA; Packard C; Calder PC; Mathers JC; Minihane AM; Tourniaire F; Kesse-Guyot E; Galan P; Hercberg S; Breidenassel C; González Gross M; Moussa M; Meirhaeghe A; Reboul E
    J Nutr; 2013 Apr; 143(4):448-56. PubMed ID: 23427331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Transport and Delivery of Vitamin A and Carotenoids to the Retinal Pigment Epithelium.
    Harrison EH
    Mol Nutr Food Res; 2019 Aug; 63(15):e1801046. PubMed ID: 30698921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The solubilisation pattern of lutein, zeaxanthin, canthaxanthin and beta-carotene differ characteristically in liposomes, liver microsomes and retinal epithelial cells.
    Shafaa MW; Diehl HA; Socaciu C
    Biophys Chem; 2007 Sep; 129(2-3):111-9. PubMed ID: 17566630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes.
    Li B; Vachali PP; Shen Z; Gorusupudi A; Nelson K; Besch BM; Bartschi A; Longo S; Mattinson T; Shihab S; Polyakov NE; Suntsova LP; Dushkin AV; Bernstein PS
    Exp Eye Res; 2017 Jun; 159():123-131. PubMed ID: 28286282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lutein and zeaxanthin are associated with photoreceptors in the human retina.
    Sommerburg OG; Siems WG; Hurst JS; Lewis JW; Kliger DS; van Kuijk FJ
    Curr Eye Res; 1999 Dec; 19(6):491-5. PubMed ID: 10550790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models.
    Khachik F; de Moura FF; Zhao DY; Aebischer CP; Bernstein PS
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3383-92. PubMed ID: 12407147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All three human scavenger receptor class B proteins can bind and transport all three macular xanthophyll carotenoids.
    Shyam R; Vachali P; Gorusupudi A; Nelson K; Bernstein PS
    Arch Biochem Biophys; 2017 Nov; 634():21-28. PubMed ID: 28947101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional factors and visual function in premature infants.
    Jewell VC; Northrop-Clewes CA; Tubman R; Thurnham DI
    Proc Nutr Soc; 2001 May; 60(2):171-8. PubMed ID: 11681632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is beta-carotene an antioxidant?
    Crabtree DV; Adler AJ
    Med Hypotheses; 1997 Feb; 48(2):183-7. PubMed ID: 9076701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Carotene bioaccessibility from biofortified maize (Zea mays) is related to its density and is negatively influenced by lutein and zeaxanthin.
    Dube N; Mashurabad PC; Hossain F; Pullakhandam R; Thingnganing L; Bharatraj DK
    Food Funct; 2018 Jan; 9(1):379-388. PubMed ID: 29215107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lutein, zeaxanthin, and the macular pigment.
    Landrum JT; Bone RA
    Arch Biochem Biophys; 2001 Jan; 385(1):28-40. PubMed ID: 11361022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the uptake and secretion of carotene and xanthophyll carotenoids by Caco-2 intestinal cells.
    O'Sullivan L; Ryan L; O'Brien N
    Br J Nutr; 2007 Jul; 98(1):38-44. PubMed ID: 17445346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants.
    Sundelin SP; Nilsson SE
    Free Radic Biol Med; 2001 Jul; 31(2):217-25. PubMed ID: 11440833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility of pro-vitamin A carotenoids is minimally affected by non pro-vitamin a xanthophylls in maize (Zea mays sp.).
    Thakkar SK; Failla ML
    J Agric Food Chem; 2008 Dec; 56(23):11441-6. PubMed ID: 18991453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the Macular Carotenoid Lutein in Human Retinal Pigment Epithelial Cells.
    Gong X; Draper CS; Allison GS; Marisiddaiah R; Rubin LP
    Antioxidants (Basel); 2017 Dec; 6(4):. PubMed ID: 29207534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI).
    Reboul E; Abou L; Mikail C; Ghiringhelli O; André M; Portugal H; Jourdheuil-Rahmani D; Amiot MJ; Lairon D; Borel P
    Biochem J; 2005 Apr; 387(Pt 2):455-61. PubMed ID: 15554873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.