BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18425606)

  • 1. High-resolution thermogravimetric analysis for rapid characterization of biomass composition and selection of shrub willow varieties.
    Serapiglia MJ; Cameron KD; Stipanovic AJ; Smart LB
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):3-11. PubMed ID: 18425606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production.
    Hallac BB; Sannigrahi P; Pu Y; Ray M; Murphy RJ; Ragauskas AJ
    J Agric Food Chem; 2009 Feb; 57(4):1275-81. PubMed ID: 19170631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.
    Chundawat SP; Balan V; Dale BE
    Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake.
    Purdy JJ; Smart LB
    Int J Phytoremediation; 2008; 10(6):515-28. PubMed ID: 19260230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts.
    Mirck J; Volk TA
    Bioresour Technol; 2010 May; 101(10):3484-92. PubMed ID: 20096566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuticular wax composition of Salix varieties in relation to biomass productivity.
    Teece MA; Zengeya T; Volk TA; Smart LB
    Phytochemistry; 2008 Jan; 69(2):396-402. PubMed ID: 17900636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops.
    Bressler A; Vidon P; Hirsch P; Volk T
    Environ Monit Assess; 2017 Apr; 189(4):137. PubMed ID: 28251452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Willow growth in response to nutrients and moisture on a clay landfill cap soil. I. Growth and biomass production.
    Martin PJ; Stephens W
    Bioresour Technol; 2006 Feb; 97(3):437-48. PubMed ID: 16216728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids.
    Serapiglia MJ; Gouker FE; Smart LB
    BMC Plant Biol; 2014 Mar; 14():74. PubMed ID: 24661804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between thermal behaviour of lignocellulosic components and properties of biomass.
    Pang CH; Gaddipatti S; Tucker G; Lester E; Wu T
    Bioresour Technol; 2014 Nov; 172():312-320. PubMed ID: 25277259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing the variability of antioxidative phenolic glycosides in Salix species.
    Förster N; Ulrichs C; Zander M; Kätzel R; Mewis I
    J Agric Food Chem; 2010 Jul; 58(14):8205-10. PubMed ID: 20593762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J
    Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting within-family variability in juvenile height growth of Salix based upon similarity among parental AFLP fingerprints.
    Kopp F; Smart B; Maynard A; Tuskan A; Abrahamson P
    Theor Appl Genet; 2002 Jul; 105(1):106-112. PubMed ID: 12582568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.
    Ai J; Tschirner U
    Bioresour Technol; 2010 Jan; 101(1):215-21. PubMed ID: 19720527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.).
    Carlson CH; Gouker FE; Crowell CR; Evans L; DiFazio SP; Smart CD; Smart LB
    Ann Bot; 2019 Oct; 124(4):701-716. PubMed ID: 31008500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.
    Serapiglia MJ; Humiston MC; Xu H; Hogsett DA; de Orduña RM; Stipanovic AJ; Smart LB
    Front Plant Sci; 2013; 4():57. PubMed ID: 23532212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.
    Cai J; Wu W; Liu R
    Bioresour Technol; 2013 Mar; 132():423-6. PubMed ID: 23280091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios.
    Wang D; Jaiswal D; LeBauer DS; Wertin TM; Bollero GA; Leakey AD; Long SP
    Plant Cell Environ; 2015 Sep; 38(9):1850-65. PubMed ID: 25963097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.