These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 18425625)
1. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes. Piskonen R; Nyyssönen M; Itävaara M Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625 [TBL] [Abstract][Full Text] [Related]
2. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. Tuomi PM; Salminen JM; Jørgensen KS FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859 [TBL] [Abstract][Full Text] [Related]
3. Identification of nah-1 genes of the Pseudomonas putida naphthalene-degrading NPL-41 plasmid operon. Serebriiskaya TS; Lenets AA; Goldenkova IV; Kobets NS; Piruzian ES Mol Gen Mikrobiol Virusol; 1999; (4):33-6. PubMed ID: 10621937 [TBL] [Abstract][Full Text] [Related]
4. Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Mesarch MB; Nakatsu CH; Nies L Water Res; 2004 Mar; 38(5):1281-8. PubMed ID: 14975661 [TBL] [Abstract][Full Text] [Related]
5. [Effect of transposons on expression of genes for naphthalene biodegradation in Pseudomonas putida BS202(NPL-1) and derivative strains]. Sokolov SL; Kosheleva IA; Filonov AE; Boronin AM Mikrobiologiia; 2005; 74(1):79-86. PubMed ID: 15835782 [TBL] [Abstract][Full Text] [Related]
6. Evidence of indigenous NAH plasmid of naphthalene degrading Pseudomonas putida PpG7 strain implicated in limonin degradation. Ghosh M; Ganguli A; Mallik M J Microbiol; 2006 Oct; 44(5):473-9. PubMed ID: 17082740 [TBL] [Abstract][Full Text] [Related]
7. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia]. Vacca GS; Kiesel B; Wünsche L; Pucci OH Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896 [TBL] [Abstract][Full Text] [Related]
8. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Piskonen R; Nyyssönen M; Rajamäki T; Itävaara M Biodegradation; 2005 Mar; 16(2):127-34. PubMed ID: 15730023 [TBL] [Abstract][Full Text] [Related]
9. Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture. Rogers JB; DuTeau NM; Reardon KF Biotechnol Bioeng; 2000 Nov; 70(4):436-45. PubMed ID: 11005926 [TBL] [Abstract][Full Text] [Related]
10. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1. Hallier-Soulier S; Ducrocq V; Truffaut N Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042 [TBL] [Abstract][Full Text] [Related]
11. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures. Liu J; Amemiya T; Chang Q; Qian Y; Itoh K Biodegradation; 2012 Sep; 23(5):683-91. PubMed ID: 22350420 [TBL] [Abstract][Full Text] [Related]
12. A targeted real-time PCR assay for studying naphthalene degradation in the environment. Nyyssönen M; Piskonen R; Itävaara M Microb Ecol; 2006 Oct; 52(3):533-43. PubMed ID: 17013553 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121 [TBL] [Abstract][Full Text] [Related]
14. Response of Pseudomonas putida F1 cultures to fluctuating toluene loads and operational failures in suspended growth bioreactors. Muñoz R; Díaz LF; Bordel S; Villaverde S Biodegradation; 2008 Nov; 19(6):897-908. PubMed ID: 18408894 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the biodegradation potential of psychrotrophic microorganisms. Whyte LG; Greer CW; Inniss WE Can J Microbiol; 1996 Feb; 42(2):99-106. PubMed ID: 8742353 [TBL] [Abstract][Full Text] [Related]
17. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Luz AP; Pellizari VH; Whyte LG; Greer CW Can J Microbiol; 2004 May; 50(5):323-33. PubMed ID: 15213740 [TBL] [Abstract][Full Text] [Related]
18. [The construction and monitoring of genetically marked, plasmid-containing, naphthalene-degrading strains in soil]. Filonov AE; Akhmetov LI; Puntus IF; Esikova TZ; Gafarov AB; Izmalkova TIu; Sokolov SL; Kosheleva IA; Boronin AM Mikrobiologiia; 2005; 74(4):526-32. PubMed ID: 16211857 [TBL] [Abstract][Full Text] [Related]
19. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems]. Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719 [TBL] [Abstract][Full Text] [Related]
20. Monitoring aromatic hydrocarbon biodegradation by functional marker genes. Nyyssönen M; Piskonen R; Itävaara M Environ Pollut; 2008 Jul; 154(2):192-202. PubMed ID: 18037200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]