These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cross-bridge induced force enhancement? Mehta A; Herzog W J Biomech; 2008; 41(7):1611-5. PubMed ID: 18387614 [TBL] [Abstract][Full Text] [Related]
4. Temperature dependence of the force-generating process in single fibres from frog skeletal muscle. Piazzesi G; Reconditi M; Koubassova N; Decostre V; Linari M; Lucii L; Lombardi V J Physiol; 2003 May; 549(Pt 1):93-106. PubMed ID: 12665607 [TBL] [Abstract][Full Text] [Related]
5. [Conformational changes of actin induced by strong or weak myosin subfragment-1 binding]. Dedova IV; Avrova SV; Vikhoreva NN; Vikhorev RG; Hazlett TL; Van der Meer W; Dos Remedios CG; Borovikov IuS Tsitologiia; 2004; 46(8):719-34. PubMed ID: 15598019 [TBL] [Abstract][Full Text] [Related]
6. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles. Steffen W; Sleep J Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1857-65. PubMed ID: 15647161 [TBL] [Abstract][Full Text] [Related]
7. Intermonomer cross-linking of F-actin alters the dynamics of its interaction with H-meromyosin in the weak-binding state. Hegyi G; Belágyi J FEBS J; 2006 May; 273(9):1896-905. PubMed ID: 16640554 [TBL] [Abstract][Full Text] [Related]
8. Modeling residual force enhancement with generic cross-bridge models. Walcott S; Herzog W Math Biosci; 2008 Dec; 216(2):172-86. PubMed ID: 18955069 [TBL] [Abstract][Full Text] [Related]
9. Observing cycling of a few cross-bridges during isometric contraction of skeletal muscle. Mettikolla P; Calander N; Luchowski R; Gryczynski I; Gryczynski Z; Borejdo J Cytoskeleton (Hoboken); 2010 Jun; 67(6):400-11. PubMed ID: 20517927 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of adenosine triphosphate hydrolysis by shortening myofibrils from rabbit psoas muscle. Ohno T; Kodama T J Physiol; 1991 Sep; 441():685-702. PubMed ID: 1816389 [TBL] [Abstract][Full Text] [Related]
11. Correlation between mechanical and enzymatic events in contracting skeletal muscle fiber. Shepard A; Borejdo J Biochemistry; 2004 Mar; 43(10):2804-11. PubMed ID: 15005615 [TBL] [Abstract][Full Text] [Related]
13. Changes in orientation of actin during contraction of muscle. Borejdo J; Shepard A; Dumka D; Akopova I; Talent J; Malka A; Burghardt TP Biophys J; 2004 Apr; 86(4):2308-17. PubMed ID: 15041669 [TBL] [Abstract][Full Text] [Related]
14. Models in which many cross-bridges attach simultaneously can explain the filament movement per ATP split during muscle contraction. Barclay CJ Int J Biol Macromol; 2003 Sep; 32(3-5):139-47. PubMed ID: 12957310 [TBL] [Abstract][Full Text] [Related]
16. Cross-bridge interaction with oppositely polarized actin filaments in double-overlap zones of insect flight muscle. Trombitás K; Tigyi-Sebes A Nature; 1984 May 10-16; 309(5964):168-70. PubMed ID: 6717596 [TBL] [Abstract][Full Text] [Related]
17. Modeling rigor cross-bridge patterns in muscle I. Initial studies of the rigor lattice of insect flight muscle. Haselgrove JC; Reedy MK Biophys J; 1978 Dec; 24(3):713-28. PubMed ID: 737284 [TBL] [Abstract][Full Text] [Related]
18. Repriming the actomyosin crossbridge cycle. Steffen W; Sleep J Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12904-9. PubMed ID: 15326285 [TBL] [Abstract][Full Text] [Related]
19. [Estimating the length of actomyosin cross-bridge contraction]. Sidorenko NP Biofizika; 1987; 32(3):516-7. PubMed ID: 3620527 [TBL] [Abstract][Full Text] [Related]
20. Protein osmotic pressure and cross-bridge attachment determine the stiffness of thin filaments in muscle ex vivo. Grazi E; Di Bona C J Biochem; 2006 Jul; 140(1):39-42. PubMed ID: 16877766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]