These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18426232)

  • 1. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process.
    Li S; Zhang S; Wang X
    Langmuir; 2008 May; 24(10):5585-90. PubMed ID: 18426232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process.
    Shirgholami MA; Khalil-Abad MS; Khajavi R; Yazdanshenas ME
    J Colloid Interface Sci; 2011 Jul; 359(2):530-5. PubMed ID: 21536303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes-azide polymer composites.
    Li G; Wang H; Zheng H; Bai R
    Langmuir; 2010 May; 26(10):7529-34. PubMed ID: 20155981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties.
    Song X; Zhai J; Wang Y; Jiang L
    J Phys Chem B; 2005 Mar; 109(9):4048-52. PubMed ID: 16851462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.
    Ishizaki T; Saito N
    Langmuir; 2010 Jun; 26(12):9749-55. PubMed ID: 20377219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates.
    Xu W; Liu H; Lu S; Xi J; Wang Y
    Langmuir; 2008 Oct; 24(19):10895-900. PubMed ID: 18774835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid.
    Wu T; Pan Y; Li L
    J Colloid Interface Sci; 2010 Aug; 348(1):265-70. PubMed ID: 20427047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.
    Xu X; Zhang Z; Yang J
    Langmuir; 2010 Mar; 26(5):3654-8. PubMed ID: 20000636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing.
    Balu B; Breedveld V; Hess DW
    Langmuir; 2008 May; 24(9):4785-90. PubMed ID: 18315020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic cellulose nanocomposites.
    Gonçalves G; Marques PA; Trindade T; Neto CP; Gandini A
    J Colloid Interface Sci; 2008 Aug; 324(1-2):42-6. PubMed ID: 18508072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of superhydrophobic coatings on zinc, silicon, and steel by a solution-immersion technique.
    Liu H; Szunerits S; Pisarek M; Xu W; Boukherroub R
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2086-91. PubMed ID: 20355837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of superhydrophobic surfaces of n-hexatriacontane.
    Tavana H; Amirfazli A; Neumann AW
    Langmuir; 2006 Jun; 22(13):5556-9. PubMed ID: 16768473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region.
    Zhang L; Li Y; Sun J; Shen J
    J Colloid Interface Sci; 2008 Mar; 319(1):302-8. PubMed ID: 18068180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of cotton fabric with superhydrophobicity and flame retardancy.
    Zhang M; Wang C
    Carbohydr Polym; 2013 Jul; 96(2):396-402. PubMed ID: 23768579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a superhydrophobic surface using woven structures.
    Michielsen S; Lee HJ
    Langmuir; 2007 May; 23(11):6004-10. PubMed ID: 17465576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-area unmodified superhydrophobic copper substrate can be prepared by an electroless replacement deposition.
    Song W; Zhang J; Xie Y; Cong Q; Zhao B
    J Colloid Interface Sci; 2009 Jan; 329(1):208-11. PubMed ID: 18950783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures.
    Nishimoto S; Sekine H; Zhang X; Liu Z; Nakata K; Murakami T; Koide Y; Fujishima A
    Langmuir; 2009 Jul; 25(13):7226-8. PubMed ID: 19563218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction.
    Lin D; Zeng X; Li H; Lai X; Wu T
    J Colloid Interface Sci; 2019 Jan; 533():198-206. PubMed ID: 30165297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Superhydrophobic/Superhydrophilic Cotton Fabrics Designed by Spraying Polymer and Nanoparticles.
    Sasaki K; Tenjimbayashi M; Manabe K; Shiratori S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):651-9. PubMed ID: 26595458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.
    Ishizaki T; Masuda Y; Sakamoto M
    Langmuir; 2011 Apr; 27(8):4780-8. PubMed ID: 21417352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.