These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Evaluation of three new models of hydrocephalus shunts. Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD Acta Neurochir Suppl; 2005; 95():223-7. PubMed ID: 16463854 [TBL] [Abstract][Full Text] [Related]
6. [Effect of magnetic fields from home-use magnetic induction therapy apparatuses on adjustable cerebrospinal fluid shunt valves]. Nakashima K; Oishi A; Itokawa H; Fujimoto M No Shinkei Geka; 2010 Aug; 38(8):725-9. PubMed ID: 20697146 [TBL] [Abstract][Full Text] [Related]
7. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine. Nakashima K; Nakajo T; Kawamo M; Kato A; Ishigaki S; Murakami H; Imaizumi Y; Izumiyama H Neurol Med Chir (Tokyo); 2011; 51(9):635-8. PubMed ID: 21946726 [TBL] [Abstract][Full Text] [Related]
8. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme. Czosnyka Z; Czosnyka M; Richards HK; Pickard JD Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485 [TBL] [Abstract][Full Text] [Related]
10. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory. Chari A; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH J Neurosurg; 2014 Mar; 120(3):697-707. PubMed ID: 24405071 [TBL] [Abstract][Full Text] [Related]
11. An adjustable CSF shunt: advices for clinical use. Lundkvist B; Eklund A; Koskinen LO; Malm J Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391 [TBL] [Abstract][Full Text] [Related]
12. Magnetic field interactions in adjustable hydrocephalus shunts. Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607 [TBL] [Abstract][Full Text] [Related]
13. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves. Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091 [TBL] [Abstract][Full Text] [Related]
14. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves. Inoue T; Kuzu Y; Ogasawara K; Ogawa A J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283 [TBL] [Abstract][Full Text] [Related]
16. CSF outflow resistance as predictor of shunt function. A long-term study. Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771 [TBL] [Abstract][Full Text] [Related]
17. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis. Arnell K; Eriksson E; Olsen L Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218 [TBL] [Abstract][Full Text] [Related]
18. Efficacy and safety of the Miethke programmable differential pressure valve (proGAVĀ®2.0): a single-centre retrospective analysis. Hall BJ; S Gillespie C; Hennigan D; Bagga V; Mallucci C; Pettorini B Childs Nerv Syst; 2021 Aug; 37(8):2605-2612. PubMed ID: 34021371 [TBL] [Abstract][Full Text] [Related]
19. Setting pressure can change the size and shape of MRI artifacts caused by adjustable shunt valves: a study of the 4 newest models. Uchida D; Amano Y; Nakatogawa H; Masui T; Ando N; Nakayama T; Sato H; Sameshima T; Tanaka T J Neurosurg; 2019 Apr; 130(4):1260-1267. PubMed ID: 29775146 [TBL] [Abstract][Full Text] [Related]
20. Ultra-low-pressure hydrocephalic state in NPH: benefits of therapeutic siphoning with adjustable antigravity valves. Funnell JP; D'Antona L; Craven CL; Thorne L; Watkins LD; Toma AK Acta Neurochir (Wien); 2020 Dec; 162(12):2967-2974. PubMed ID: 32989519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]