These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18426562)

  • 1. Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt.
    Allin DM; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH
    Cerebrospinal Fluid Res; 2008 Apr; 5():8. PubMed ID: 18426562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro hydrodynamic properties of the Miethke ProGAV hydrocephalus shunt.
    Allin DM; Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Cerebrospinal Fluid Res; 2006 Jun; 3():9. PubMed ID: 16808836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic properties of the Certas hydrocephalus shunt.
    Czosnyka Z; Pickard JD; Czosnyka M
    J Neurosurg Pediatr; 2013 Feb; 11(2):198-204. PubMed ID: 23215818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Shunt Assistant tested in Cambridge shunt evaluation laboratory.
    Czosnyka M; Czosnyka Z; Pickard JD
    Acta Neurochir Suppl; 2012; 113():71-6. PubMed ID: 22116427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of three new models of hydrocephalus shunts.
    Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir Suppl; 2005; 95():223-7. PubMed ID: 16463854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of magnetic fields from home-use magnetic induction therapy apparatuses on adjustable cerebrospinal fluid shunt valves].
    Nakashima K; Oishi A; Itokawa H; Fujimoto M
    No Shinkei Geka; 2010 Aug; 38(8):725-9. PubMed ID: 20697146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine.
    Nakashima K; Nakajo T; Kawamo M; Kato A; Ishigaki S; Murakami H; Imaizumi Y; Izumiyama H
    Neurol Med Chir (Tokyo); 2011; 51(9):635-8. PubMed ID: 21946726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory.
    Chari A; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg; 2014 Mar; 120(3):697-707. PubMed ID: 24405071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adjustable CSF shunt: advices for clinical use.
    Lundkvist B; Eklund A; Koskinen LO; Malm J
    Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field interactions in adjustable hydrocephalus shunts.
    Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.
    Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M
    Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory.
    Czosnyka M; Czosnyka Z; Whitehouse H; Pickard JD
    J Neurol Neurosurg Psychiatry; 1997 Jan; 62(1):43-50. PubMed ID: 9010399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy and safety of the Miethke programmable differential pressure valve (proGAVĀ®2.0): a single-centre retrospective analysis.
    Hall BJ; S Gillespie C; Hennigan D; Bagga V; Mallucci C; Pettorini B
    Childs Nerv Syst; 2021 Aug; 37(8):2605-2612. PubMed ID: 34021371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Setting pressure can change the size and shape of MRI artifacts caused by adjustable shunt valves: a study of the 4 newest models.
    Uchida D; Amano Y; Nakatogawa H; Masui T; Ando N; Nakayama T; Sato H; Sameshima T; Tanaka T
    J Neurosurg; 2019 Apr; 130(4):1260-1267. PubMed ID: 29775146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-low-pressure hydrocephalic state in NPH: benefits of therapeutic siphoning with adjustable antigravity valves.
    Funnell JP; D'Antona L; Craven CL; Thorne L; Watkins LD; Toma AK
    Acta Neurochir (Wien); 2020 Dec; 162(12):2967-2974. PubMed ID: 32989519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.