BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 18426580)

  • 1. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms.
    Malekpour SA; Haghverdi L; Sadeghi M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38653489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gene regulatory network inference model based on pseudo-siamese network.
    Wang Q; Guo M; Chen J; Duan R
    BMC Bioinformatics; 2023 Apr; 24(1):163. PubMed ID: 37085776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systems Biology Approach To Disentangle the Direct and Indirect Effects of Global Transcription Factors on Gene Expression in Escherichia coli.
    Iyer MS; Pal A; Venkatesh KV
    Microbiol Spectr; 2023 Feb; 11(2):e0210122. PubMed ID: 36749045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building High-Confidence Gene Regulatory Networks by Integrating Validated TF-Target Gene Interactions Using ConnecTF.
    Huang J; Katari MS; Juang CL; Coruzzi GM; Brooks MD
    Methods Mol Biol; 2023; 2698():195-220. PubMed ID: 37682477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM).
    Nie J; Stewart R; Zhang H; Thomson JA; Ruan F; Cui X; Wei H
    BMC Syst Biol; 2011 Apr; 5():53. PubMed ID: 21496241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational discovery of miR-TF regulatory modules in human genome.
    Tran DH; Satou K; Ho TB; Pham TH
    Bioinformation; 2010 Feb; 4(8):371-7. PubMed ID: 20975901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering transcription factor regulatory targets using gene expression and binding data.
    Maienschein-Cline M; Zhou J; White KP; Sciammas R; Dinner AR
    Bioinformatics; 2012 Jan; 28(2):206-13. PubMed ID: 22084256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering co-regulatory modules and gene regulatory networks in the heart through machine learning-based analysis of large-scale epigenomic data.
    Vahab N; Bonu T; Kuhlmann L; Ramialison M; Tyagi S
    Comput Biol Med; 2024 Mar; 171():108068. PubMed ID: 38354497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655.
    Gao Y; Yurkovich JT; Seo SW; Kabimoldayev I; Dräger A; Chen K; Sastry AV; Fang X; Mih N; Yang L; Eichner J; Cho BK; Kim D; Palsson BO
    Nucleic Acids Res; 2018 Nov; 46(20):10682-10696. PubMed ID: 30137486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks.
    Sauta E; Demartini A; Vitali F; Riva A; Bellazzi R
    BMC Bioinformatics; 2020 May; 21(1):219. PubMed ID: 32471360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework.
    Hu S; Jing Y; Li T; Wang YG; Liu Z; Gao J; Tian YC
    BMC Bioinformatics; 2023 Sep; 24(1):362. PubMed ID: 37752445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TFTG: A comprehensive database for human transcription factors and their targets.
    Zhou X; Zhou L; Qian F; Chen J; Zhang Y; Yu Z; Zhang J; Yang Y; Li Y; Song C; Wang Y; Shang D; Dong L; Zhu J; Li C; Wang Q
    Comput Struct Biotechnol J; 2024 Dec; 23():1877-1885. PubMed ID: 38707542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PPRTGI: A Personalized PageRank Graph Neural Network for TF-Target Gene Interaction Detection.
    Ma K; Li J; Zhao M; Zamit I; Lin B; Guo F; Tang J
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):480-491. PubMed ID: 38451769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proximity-based graph clustering method for the identification and application of transcription factor clusters.
    Spadafore M; Najarian K; Boyle AP
    BMC Bioinformatics; 2017 Nov; 18(1):530. PubMed ID: 29187152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Inference of Gene Regulatory Network Using Genome-wide ChIP-X Data.
    Singh S; Kiran M; Somvanshi PR
    Methods Mol Biol; 2024; 2719():295-306. PubMed ID: 37803124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring transcriptional interactions and regulator activities from experimental data.
    Wang RS; Zhang XS; Chen L
    Mol Cells; 2007 Dec; 24(3):307-15. PubMed ID: 18182844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bayesian framework that integrates heterogeneous data for inferring gene regulatory networks.
    Santra T
    Front Bioeng Biotechnol; 2014; 2():13. PubMed ID: 25152886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific atlas of trans-models for gene regulation elucidates complex regulation patterns.
    Dagostino R; Gottlieb A
    BMC Genomics; 2024 Apr; 25(1):377. PubMed ID: 38632500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta Gene Regulatory Networks in Maize Highlight Functionally Relevant Regulatory Interactions.
    Zhou P; Li Z; Magnusson E; Gomez Cano F; Crisp PA; Noshay JM; Grotewold E; Hirsch CN; Briggs SP; Springer NM
    Plant Cell; 2020 May; 32(5):1377-1396. PubMed ID: 32184350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.