These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18426804)

  • 1. Comparative conservation analysis of the human mitotic phosphoproteome.
    Malik R; Nigg EA; Körner R
    Bioinformatics; 2008 Jun; 24(12):1426-32. PubMed ID: 18426804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages.
    Malik R; Lenobel R; Santamaria A; Ries A; Nigg EA; Körner R
    J Proteome Res; 2009 Oct; 8(10):4553-63. PubMed ID: 19691289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting functionally important residues from sequence conservation.
    Capra JA; Singh M
    Bioinformatics; 2007 Aug; 23(15):1875-82. PubMed ID: 17519246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPS: a novel group-based phosphorylation predicting and scoring method.
    Zhou FF; Xue Y; Chen GL; Yao X
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1443-8. PubMed ID: 15555589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imprint of evolutionary conservation and protein structure variation on the binding function of protein tyrosine kinases.
    Verkhivker GM
    Bioinformatics; 2006 Aug; 22(15):1846-54. PubMed ID: 16720585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom.
    Gao X; Jin C; Ren J; Yao X; Xue Y
    Genomics; 2008 Dec; 92(6):457-63. PubMed ID: 18817865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.
    Daub H; Olsen JV; Bairlein M; Gnad F; Oppermann FS; Körner R; Greff Z; Kéri G; Stemmann O; Mann M
    Mol Cell; 2008 Aug; 31(3):438-48. PubMed ID: 18691976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteome sequence analysis and significance: mining association patterns around phosphorylation sites utilizing MAPRes.
    Ahmad I; Mehmood A; Khurshid A; Qazi WM; Hoessli DC; Walker-Nasir E; Shakoori AR;
    J Cell Biochem; 2009 Sep; 108(1):64-74. PubMed ID: 19544398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory.
    Xue Y; Li A; Wang L; Feng H; Yao X
    BMC Bioinformatics; 2006 Mar; 7():163. PubMed ID: 16549034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery.
    Davey NE; Shields DC; Edwards RJ
    Bioinformatics; 2009 Feb; 25(4):443-50. PubMed ID: 19136552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.
    Wang B; Malik R; Nigg EA; Körner R
    Anal Chem; 2008 Dec; 80(24):9526-33. PubMed ID: 19007248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caenorhabditis elegans has a phosphoproteome atypical for metazoans that is enriched in developmental and sex determination proteins.
    Zielinska DF; Gnad F; Jedrusik-Bode M; Wiśniewski JR; Mann M
    J Proteome Res; 2009 Aug; 8(8):4039-49. PubMed ID: 19530675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain.
    Ballif BA; Carey GR; Sunyaev SR; Gygi SP
    J Proteome Res; 2008 Jan; 7(1):311-8. PubMed ID: 18034455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites.
    Schilling O; Overall CM
    Nat Biotechnol; 2008 Jun; 26(6):685-94. PubMed ID: 18500335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale analysis of influenza A virus sequences reveals potential drug target sites of non-structural proteins.
    Darapaneni V; Prabhaker VK; Kukol A
    J Gen Virol; 2009 Sep; 90(Pt 9):2124-33. PubMed ID: 19420157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel at the library.
    Yaffe MB
    Nat Methods; 2004 Oct; 1(1):13-4. PubMed ID: 15782146
    [No Abstract]   [Full Text] [Related]  

  • 19. The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins.
    Soufi B; Gnad F; Jensen PR; Petranovic D; Mann M; Mijakovic I; Macek B
    Proteomics; 2008 Sep; 8(17):3486-93. PubMed ID: 18668697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NetPhosBac - a predictor for Ser/Thr phosphorylation sites in bacterial proteins.
    Miller ML; Soufi B; Jers C; Blom N; Macek B; Mijakovic I
    Proteomics; 2009 Jan; 9(1):116-25. PubMed ID: 19053140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.