These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1842693)

  • 1. Propagation of parallel fiber volleys in the cerebellar cortex: a computer simulation.
    Bernard C; Axelrad H
    Brain Res; 1991 Nov; 565(2):195-208. PubMed ID: 1842693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences.
    Meek J
    Neuroscience; 1992; 48(2):249-83. PubMed ID: 1603322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal transmission in the parallel fiber-Purkinje cell system visualized by high-resolution imaging.
    Vranesic I; Iijima T; Ichikawa M; Matsumoto G; Knöpfel T
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):13014-7. PubMed ID: 7809165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of mossy fiber cerebral and spinal inputs on cerebellar Purkinje cells.
    Arshavsky YI; Berkinblit MB; Fukson OI; Popova LB; Yakobson VS
    Neuroscience; 1981; 6(10):1985-93. PubMed ID: 7301115
    [No Abstract]   [Full Text] [Related]  

  • 5. No parallel fiber volleys in the cerebellar cortex: evidence from cross-correlation analysis between Purkinje cells in a computer model and in recordings from anesthetized rats.
    Jaeger D
    J Comput Neurosci; 2003; 14(3):311-27. PubMed ID: 12766430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel fiber receptive fields: a key to understanding cerebellar operation and learning.
    Ekerot CF; Jörntell H
    Cerebellum; 2003; 2(2):101-9. PubMed ID: 12880177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic single unit simulation of a realistic cerebellar network model. II. Purkinje cell activity within the basic circuit and modified by inhibitory systems.
    Pellionisz A; Szentàgothai J
    Brain Res; 1974 Mar; 68(1):19-40. PubMed ID: 4470450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging parallel fiber and climbing fiber responses and their short-term interactions in the mouse cerebellar cortex in vivo.
    Dunbar RL; Chen G; Gao W; Reinert KC; Feddersen R; Ebner TJ
    Neuroscience; 2004; 126(1):213-27. PubMed ID: 15145087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum.
    Sugihara I; Lang EJ; Llinás R
    J Physiol; 1993 Oct; 470():243-71. PubMed ID: 8308729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression.
    Sakurai M
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3383-5. PubMed ID: 2159149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers.
    Cohen D; Yarom Y
    Proc Natl Acad Sci U S A; 1998 Dec; 95(25):15032-6. PubMed ID: 9844010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between responses in Purkinje cells evoked by climbing fibre impulses and parallel fibre volleys in the cat.
    Campbell NC; Ekerot CF; Hesslow G
    J Physiol; 1983 Jul; 340():225-38. PubMed ID: 6887050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum.
    Lippiello P; Hoxha E; Volpicelli F; Lo Duca G; Tempia F; Miniaci MC
    Neuropharmacology; 2015 Feb; 89():33-42. PubMed ID: 25218865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic shunting by a baseline of synaptic conductances modulates responses to inhibitory input volleys in cerebellar Purkinje cells.
    Kreiner L; Jaeger D
    Cerebellum; 2004; 3(2):112-25. PubMed ID: 15233579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow excitatory amino acid receptor-mediated synaptic transmission in turtle cerebellar Purkinje cells.
    Larson-Prior LJ; McCrimmon DR; Slater NT
    J Neurophysiol; 1990 Mar; 63(3):637-50. PubMed ID: 1970354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.
    Gilmer JI; Person AL
    J Neurosci; 2017 Dec; 37(50):12153-12166. PubMed ID: 29118107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.
    Barmack NH; Yakhnitsa V
    Cerebellum; 2015 Oct; 14(5):597-612. PubMed ID: 26424151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
    Miyakawa H; Lev-Ram V; Lasser-Ross N; Ross WN
    J Neurophysiol; 1992 Oct; 68(4):1178-89. PubMed ID: 1359027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learned response sequences in cerebellar Purkinje cells.
    Jirenhed DA; Rasmussen A; Johansson F; Hesslow G
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6127-6132. PubMed ID: 28533379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.